A cylinder of curved surface area 1,250m^2 is formed from a rectangular metallic sheet find the dimesions of the rectangular sheet if its length is doubled its breadth
Answers
Answered by
4
A cylinder of C.S.A 1250 m² is formed from a rectangular metallic sheets
Breadth of sheet = x
Length of sheet = 2x
Area of rectangular sheet = length × Breadth
where
2πr is a length
h is a breadth of rectangle
therefore,
Length of sheet × Breadth of sheet= 1250
2x.x = 1250
2x² = 1250
x = √ 625
x = 25 cm
Answered by
5
Hello!
:
• Breadth be
• Length be![\bf{2x} \bf{2x}](https://tex.z-dn.net/?f=%5Cbf%7B2x%7D)
Then,
![\boxed{\sf Area = \sf 1250\: m^{2}} \boxed{\sf Area = \sf 1250\: m^{2}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Csf+Area+%3D+%5Csf+1250%5C%3A+m%5E%7B2%7D%7D)
⇒ l × b = 1250 m²
⇒ 2x (x) = 1250
⇒ 2x² = 1250
⇒ x² =![\dfrac{\sf 1250}{\sf 2} \dfrac{\sf 1250}{\sf 2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csf+1250%7D%7B%5Csf+2%7D)
⇒ x =
⇒ ± ![\bf{25} \bf{25}](https://tex.z-dn.net/?f=%5Cbf%7B25%7D)
Hence,
• Breadth =![\textcolor{Blue}{\bf{25\:m}} \textcolor{Blue}{\bf{25\:m}}](https://tex.z-dn.net/?f=%5Ctextcolor%7BBlue%7D%7B%5Cbf%7B25%5C%3Am%7D%7D)
• Length, l = 25(2) =![\textcolor{Blue}{\bf{50\:m}} \textcolor{Blue}{\bf{50\:m}}](https://tex.z-dn.net/?f=%5Ctextcolor%7BBlue%7D%7B%5Cbf%7B50%5C%3Am%7D%7D)
Cheers!
• Breadth be
• Length be
Then,
⇒ l × b = 1250 m²
⇒ 2x (x) = 1250
⇒ 2x² = 1250
⇒ x² =
⇒ x =
Hence,
• Breadth =
• Length, l = 25(2) =
Cheers!
Similar questions