Math, asked by Anonymous, 1 year ago

A cylinder of same height and radius is placed on the top of a hemisphere. find the curved surface area of shape if the length of the shape be 7 cm.

Method required

Answers

Answered by gunu931
49
HOPE THIS HELPS.....

*CLICK ON THE RED HEART IF YOU LIKE THE ANSWER*
Attachments:

Anonymous: Thanks a lot
gunu931: my pleasure
Answered by amirgraveiens
11

Hence the curved surface area is 231 cm^2.  

Step-by-step explanation:

Given:

Length of the shape = 7 cm

Let radius of the cylinder = r

and the height of the cylinder h = r                         [1]

Since cylinder is placed on the top of the hemisphere

So radius of hemisphere = radius of the cylinder = r

Now surface area of the cylinder = 2πrh + 2πr^{2}

                                                         = 2πr (r) + 2π  r^{2}       [from h = r]

                                                          = 2π r^{2}  + 2π r^{2}

                                                         = 4π r^{2}

Surface area of the cylinder = 2π r^{2}

Now total surface are of the shape = 4π r^{2}+ 2π r^{2}

                                                              = 6π r^{2}

Now total length of the shape = 7

⇒ Height of the cylinder + height of the hemisphere = 7

⇒ Height of the cylinder + radius of the hemisphere = 7  (height of the semisphere = radius of the hemisphere)

⇒ r+ r = 7

⇒ 2r = 7

r= \frac{7}{2}

Curved surface are of the shape = 6πr^2

                                                        = 6π (\frac{7}{2})^2

                                                        = 6π \frac{49}{4}

                                                        =  6\times \frac{22}{7} \times\frac{49}{4}    [π = \frac{22}{7}]

                                                        = 3\times 11 \times 7

                                                        = 231 cm^2

Hence the curved surface area is 231 cm^2.                                                                                       

                                           

Similar questions