Physics, asked by royalpirate6212, 1 month ago

A cylinder wire 0.5m in length and 0.5mm in diameter, has a resistance of 2.5 ohms. Find the resistivity of the wire

Answers

Answered by Anonymous
21

 \large \rm {\underbrace{\underline{Elucidation:-}}}

━═━═━═━═━═━═━═━═━═━

 \sf \red {\underline{\underline{Provided\: that:-}}}

➻Length of the wire(l)=0.5m

➻Diamter of the wire(d)=0.5mm

➻d=0.0005m

➻Resistance (R)=2.5Ω

━═━═━═━═━═━═━═━═━═━

 \sf \blue {\underline{\underline{To\: Determine:-}}}

➻Resistivity of the wire=?

━═━═━═━═━═━═━═━═━═━

 \sf \pink {\underline{\underline{Resistivity:-}}}

Definition:- Resistivity also called "specific resistance" of a material is the resistance of a wire of that material of unit length and unit area of cross section.It is denoted by "ρ".

➻Units:- ohm×metre(Ωm)

Dimensional formula:-  \tt {M^{1}\: L^{3}\: T^{-3}\: I^{-2}}

➻By definition,

➻The formula for calculating resistivity ,

\longrightarrow \tt {\boxed{\underline{ρ=\frac{RA}{l}}}}

➻where,

➻R denotes resistance

➻A denotes Area of cross section

➻L denotes length.

━═━═━═━═━═━═━═━═━═━

➻To calculate resistivity,we need to find area of cross section.

 \sf \purple {\underline{\underline{We\: know:-}}}

➻Area of cross section of a cylinder= \tt {πr^{2}}

➻We've been given the diameter.

➻Using "d=2r",

 \to \tt {diameter=2\times radius}

 \to \tt {0.0005m=2\times radius}

 \to \tt {radius=\frac{0.0005}{2}}

 \to \tt \green {\fbox{radius(r)=0.00025m}}

━═━═━═━═━═━═━═━═━═━

➻As Radius is determined we can calculate area of cross section(A).

 \to \tt {Area\: of\: cross\: section(A)=πr^{2}}

 \to \tt {A=\frac{22}{7}\times (0.00025)^{2}}

 \to \tt {A=\frac{22}{7}\times 0.00025 \times 0.00025}

 \to \tt \green {\fbox{A≈1.964}}

━═━═━═━═━═━═━═━═━═━

➻So , finally

\large \mapsto \tt {ρ=\frac{RA}{l}}

➻Supplanting the given values,

\large \mapsto \tt {ρ=\frac{2.5Ω\times1.96m}{0.5}}

\large \mapsto \tt {ρ=\frac{\cancel{2.5}^{5}Ω\times1.96m}{\cancel{0.5}}}

 \mapsto \tt {ρ=5\times 1.96}

\large \mapsto \tt {ρ=\frac{5\times 196}{100}}

\large \mapsto \tt {ρ=\frac{\cancel{5}\times 196}{\cancel{100}_{20}}}

\large \mapsto \tt {ρ=\frac{196}{20}}

\large \mapsto \tt {ρ=\frac{\cancel{196}^{98}}{\cancel{20}_{10}}}

\large \mapsto \tt {ρ=\frac{98}{10}}

\implies \tt \green {\fbox{ρ=9.8Ωm}}

━═━═━═━═━═━═━═━═━═━

 \sf \orange  {\underline{\underline{Thereupon,}}}

➻The resistivity of the wire is "9.8Ωm" respectively.

━═━═━═━═━═━═━═━═━═━

Similar questions