A cylindrical bucket 32 cm high and 18 cm of radius of the base is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm. Find the radius and slant height of the heap.
Answers
Answered by
356
As we know if a solid object turn into another or if a thing which take a shape of one object turn into another object then there volume will be equal.
Take pie = ¶
volume of cylinder = volume of cone
¶×rsquare×h= 1/3¶r square h
18×18×32×3/24=r square
18×18×8×3/6= r square
18×18×4×3/3=r square
√18×18×2×2=r
18×2=r
r =36 cm
h= 24 cm
slant height = √36×36+24×24
slant height = √1872
slant height=
√2×2×2×2×13×3×3
slant height = 12√13 cm
Take pie = ¶
volume of cylinder = volume of cone
¶×rsquare×h= 1/3¶r square h
18×18×32×3/24=r square
18×18×8×3/6= r square
18×18×4×3/3=r square
√18×18×2×2=r
18×2=r
r =36 cm
h= 24 cm
slant height = √36×36+24×24
slant height = √1872
slant height=
√2×2×2×2×13×3×3
slant height = 12√13 cm
Answered by
69
Answer:
Hey buddy....
Here's ur answer....
Hope it helps you.....
Mark as brainliest.....
Attachments:
Similar questions