Math, asked by kalpeshmmahajan1234, 9 months ago

- A cylindrical ice-cream pot of radius 6 cm and height 21 cm is full of
ice cream. The ice cream is to be filled in cones of height 12 cm and
radius 3 cm. Ice cream on the top of the cone has hemispherical stape.
How many such cones can be filled with ice cream?​

Answers

Answered by learner248
9

Please mark my asnwer as Brainliest,say thanks to me and follow me for my efforts and time given to your question

~learner248

Attachments:
Answered by johnkumarrr4
5

Numbers of cones filled with ice cream     n=14

Step-by-step explanation:

Given,

Cylindrical ice cream pot

r=6 cm ,h=21 cm

Ice cream is to be filled in cones with top of the cone is hemispherical shape

r=3 cm, h=12 cm

Let no of ice cream is filled in cones is n.

Solution,

Volume of cylinder=V=\Pi r^{2}h

                               V=\Pi \times 6^{2}\times 21  

                                =756\Pi  cm^{3}

Volume of cone=V_{c}=1/3\times \Pi r^{2}h

                            V_{c}=1/3\times \Pi \times 3^{2}\times 12

                                  =36\Pi  cm^{3}

Volume of hemisphere=V_{h}=2/3\times \Pi r^{3}

                                       V_{h}=2/3\times \Pi \times 3^{3}

                                            =18\Pi  cm^{3}

To find the no of cones to be filled.

               n\left ( V_{c} +V_{h}\right )=V

                            n=V/\left ( V_{c} +V_{h}\right )

                            n=756\Pi /\left ( 36\Pi +18\Pi  \right )

                            n=756\Pi /54\Pi

                             n=14

14 cones to be filled with ice cream.

Similar questions