Math, asked by Anonymous, 10 months ago

A cylindrical piece of cork of base area A and height h floats in a liquid of density ρ1.

The cork is depressed slightly then released. Show that it oscillates up and down simple harmonically with a period of

T = 2\pi \sqrt{ \frac{hρ}{gρ1} }T=2πgρ1hρ​​

where ρ is the density of cork.
(Ignore Damping due to viscosity of liquid)

Answers

Answered by Anonymous
7

AnSwEr:

\small{\underline{\blue{\sf{Given :}}}}

Given:

Base Area of Cork = A

Height of Cork = h

Density of Cork = ρ

Density of Liquid = ρ1

\small{\underline{\green{\sf{Solution :}}}}

Solution:

# See attached Figure for diagram

So,

We come to know that :

\begin{lgathered}\large \star {\boxed{\sf{Weight \: of \: Cork \: = \: Weight \: of \: liquid \: Displaced}}} \\ \\ \\ \small{\sf{\pink{\underline{\: \: \: \: \: \: \: \: \: \: \: \: When \: Cork \: is \: Displaced \: \: \: \: \: \: \:!\: \: \: \:}}}} \\ \\ \\ : \implies {\sf{Force \: = \: Weight \: of \: Displaced \: Water}} \\ \\ \\ : \implies {\sf{F \: = \: - \big( Volume \: \times \: Density_{liquid} \: \times \: g \big) }} \\ \\ \\ : \implies {\sf{F \: = \: - \big( Ax \: \times \: \rho 1 \: \times \: g \big) \: \: \: \: \: \: \: \: \: \: \big[ Volume \: = \: Area \: \times \: x \big]}} \\ \\ \\ : \implies {\boxed{\sf{F \: = \: -(Ax \: \times \: \rho 1 \: \times \: g)}}} -----(1)\end{lgathered}

WeightofCork=WeightofliquidDisplaced

WhenCorkisDisplaced!

:⟹Force=WeightofDisplacedWater

:⟹F=−(Volume×Density

liquid

×g)

:⟹F=−(Ax×ρ1×g)[Volume=Area×x]

:⟹

F=−(Ax×ρ1×g)

−−−−−(1)

As we also know that :

\large \star {\boxed{\sf{F \: = \: -kx}}} ----(2)⋆

F=−kx

−−−−(2)

For the spring motion.

Now,

Equate (1) and (2)

\begin{lgathered}:\implies {\sf{\cancel{-} k \cancel{x} \: = \: \cancel{-} A \cancel{x} \rho1 g}} \\ \\ \\ : \implies {\sf{k \: = \: A \rho 1 g}}----(3)\end{lgathered}

:⟹

k

x

=

A

x

ρ1g

:⟹k=Aρ1g−−−−(3)

As we have equation for Time period for S.H.M

\large \star {\boxed{\sf{T \: = \: 2 \pi \: \sqrt{\dfrac{m}{k}}}}}⋆

T=2π

k

m

Substitute value of k

: \implies {\sf{T \: = \: 2 \pi \sqrt{\dfrac{m}{A \rho 1 g}}}}:⟹T=2π

Aρ1g

m

And take value of m as Ahρ

Substitute value of m

\begin{lgathered}: \implies {\sf{T \: = \: 2 \pi \sqrt{\dfrac{\cancel{A} h \rho}{\cancel{A} \rho 1 g}}}} \\ \\ \\ \LARGE {\boxed{\sf{T \: = \: 2 \pi \sqrt{\dfrac{h \rho }{g \rho 1 }}}}}\end{lgathered}

:⟹T=2π

A

ρ1g

A

T=2π

gρ1

\large {\mathbb{HENCE \: \: PROVED}}

HENCEPROVED

Answered by kiyara01
4

if this attachment will help you

mark as brainlest answer

Attachments:
Similar questions
Math, 1 year ago