Math, asked by XxPratyakshxX, 20 days ago

A cylindrical pillar is 50cm in diameter and 3.5m in height .find the cost of painting the curved surface of the pillar at the rate of the of Rs 12.50perm2​

Answers

Answered by mathdude500
21

\large\underline{\sf{Solution-}}

Given that,

Diameter of cylindrical pillar, d = 50 cm

So, Radius of cylindrical pillar, r = 25 cm = 0.25 m

Height of cylindrical pillar, h = 3.5 m

We know, Curved Surface Area of cylinder of radius r and height h is given by

\boxed{\rm{  \:CSA_{(Cylinder)} \:  =  \: 2 \: \pi \: r \: h \: }} \\

So, on substituting the values, we get

\rm \:  \:CSA_{(Cylindrical \: pillar)} \:  =  \: 2  \times \dfrac{22}{7} \times \dfrac{25}{100} \times \dfrac{35}{10}   \\

\rm\implies \:  \:CSA_{(Cylindrical \: pillar)} \:  =  \: 5.5 \:  {m}^{2}    \\

Now, further given that

\rm \: Cost \: of \: painting \:  {1 \: m}^{2} \: =  \:Rs \: 12.50 \\

So,

\rm \: Cost \: of \: painting \:  {5.5 \: m}^{2} \: =5.5 \times 12.5  =  \:Rs \: 68.75 \\

Hence,

\rm \: Cost \: of \: painting \: CSA_{(Cylindrical \: pillar)}=  \:Rs \: 68.75 \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by MissQueenOfFashion
5

Answer:

\large\underline{\sf{Solution-}}

Solution−

Given that,

Diameter of cylindrical pillar, d = 50 cm

So, Radius of cylindrical pillar, r = 25 cm = 0.25 m

Height of cylindrical pillar, h = 3.5 m

We know, Curved Surface Area of cylinder of radius r and height h is given by

\begin{gathered}\boxed{\rm{ \:CSA_{(Cylinder)} \: = \: 2 \: \pi \: r \: h \: }} \\ \end{gathered}

CSA

(Cylinder)

=2πrh

So, on substituting the values, we get

\begin{gathered}\rm \: \:CSA_{(Cylindrical \: pillar)} \: = \: 2 \times \dfrac{22}{7} \times \dfrac{25}{100} \times \dfrac{35}{10} \\ \end{gathered}

CSA

(Cylindricalpillar)

=2×

7

22

×

100

25

×

10

35

\begin{gathered}\rm\implies \: \:CSA_{(Cylindrical \: pillar)} \: = \: 5.5 \: {m}^{2} \\ \end{gathered}

⟹CSA

(Cylindricalpillar)

=5.5m

2

Now, further given that

\begin{gathered}\rm \: Cost \: of \: painting \: {1 \: m}^{2} \: = \:Rs \: 12.50 \\ \end{gathered}

Costofpainting1m

2

= Rs12.50

So,

\begin{gathered}\rm \: Cost \: of \: painting \: {5.5 \: m}^{2} \: =5.5 \times 12.5 = \:Rs \: 68.75 \\ \end{gathered}

Costofpainting5.5m

2

=5.5×12.5 =Rs68.75

Hence,

\begin{gathered}\rm \: Cost \: of \: painting \: CSA_{(Cylindrical \: pillar)}= \:Rs \: 68.75 \\ \end{gathered}

CostofpaintingCSA

(Cylindricalpillar)

=Rs68.75

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bf{Volume_{(cube)} = {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

MoreFormulae

MoreFormulae

★CSA

(cylinder)

=2πrh

★Volume

(cylinder)

=πr

2

h

★TSA

(cylinder)

=2πr(r+h)

★CSA

(cone)

=πrl

★TSA

(cone)

=πr(l+r)

★Volume

(sphere)

=

3

4

πr

3

★Volume

(cube)

=(side)

3

★CSA

(cube)

=4(side)

2

★TSA

(cube)

=6(side)

2

★Volume

(cuboid)

=lbh

★CSA

(cuboid)

=2(l+b)h

★TSA

(cuboid)

=2(lb+bh+hl)

hope it helpful To u

Similar questions