A cylindrical pillar is 50cm in diameter and 3.5m in height .find the cost of painting the curved surface of the pillar at the rate of the of Rs 12.50perm2
Answers
Given that,
Diameter of cylindrical pillar, d = 50 cm
So, Radius of cylindrical pillar, r = 25 cm = 0.25 m
Height of cylindrical pillar, h = 3.5 m
We know, Curved Surface Area of cylinder of radius r and height h is given by
So, on substituting the values, we get
Now, further given that
So,
Hence,
Additional Information :-
Answer:
\large\underline{\sf{Solution-}}
Solution−
Given that,
Diameter of cylindrical pillar, d = 50 cm
So, Radius of cylindrical pillar, r = 25 cm = 0.25 m
Height of cylindrical pillar, h = 3.5 m
We know, Curved Surface Area of cylinder of radius r and height h is given by
\begin{gathered}\boxed{\rm{ \:CSA_{(Cylinder)} \: = \: 2 \: \pi \: r \: h \: }} \\ \end{gathered}
CSA
(Cylinder)
=2πrh
So, on substituting the values, we get
\begin{gathered}\rm \: \:CSA_{(Cylindrical \: pillar)} \: = \: 2 \times \dfrac{22}{7} \times \dfrac{25}{100} \times \dfrac{35}{10} \\ \end{gathered}
CSA
(Cylindricalpillar)
=2×
7
22
×
100
25
×
10
35
\begin{gathered}\rm\implies \: \:CSA_{(Cylindrical \: pillar)} \: = \: 5.5 \: {m}^{2} \\ \end{gathered}
⟹CSA
(Cylindricalpillar)
=5.5m
2
Now, further given that
\begin{gathered}\rm \: Cost \: of \: painting \: {1 \: m}^{2} \: = \:Rs \: 12.50 \\ \end{gathered}
Costofpainting1m
2
= Rs12.50
So,
\begin{gathered}\rm \: Cost \: of \: painting \: {5.5 \: m}^{2} \: =5.5 \times 12.5 = \:Rs \: 68.75 \\ \end{gathered}
Costofpainting5.5m
2
=5.5×12.5 =Rs68.75
Hence,
\begin{gathered}\rm \: Cost \: of \: painting \: CSA_{(Cylindrical \: pillar)}= \:Rs \: 68.75 \\ \end{gathered}
CostofpaintingCSA
(Cylindricalpillar)
=Rs68.75
\rule{190pt}{2pt}
Additional Information :-
\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bf{Volume_{(cube)} = {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
MoreFormulae
MoreFormulae
★CSA
(cylinder)
=2πrh
★Volume
(cylinder)
=πr
2
h
★TSA
(cylinder)
=2πr(r+h)
★CSA
(cone)
=πrl
★TSA
(cone)
=πr(l+r)
★Volume
(sphere)
=
3
4
πr
3
★Volume
(cube)
=(side)
3
★CSA
(cube)
=4(side)
2
★TSA
(cube)
=6(side)
2
★Volume
(cuboid)
=lbh
★CSA
(cuboid)
=2(l+b)h
★TSA
(cuboid)
=2(lb+bh+hl)
hope it helpful To u