Math, asked by Anonymous, 1 year ago

a cylindrical pipe has. an inner diameter of 4cm. and water flows through it at a rate of 20m per min. how long will it take to fill the tank of radius 40 cm and depth 72cm?

Answers

Answered by siddhartharao77
2

Answer:

4.8 minutes

Step-by-step explanation:

Inner diameter of cylindrical pipe = 4 cm

Then,Radius = 2 cm.

Given, Rate of water flow h = 20 per min

                                          = 2000 cm per min.


∴ Volume of water which flows in 1 min = πr²h

                                                                 = π * (2)² * 2000

                                                                 = 8000π


(i)

Given, radius of tank = 40 cm.

Depth of tank = 72 cm.

∴ Volume of conical tank = (1/3) * πr²h

                                          = (1/3) * π(40)²(72)

                                          = 38400π


Time required to fill the tank:

= 38400π/8000π

= 24/5

= 4.8 min.


Therefore, time required to fill the tank = 4.8 min.


Hope it helps!


siddhartharao77: :-)
siddhartharao77: Welcome!
Answered by Siddharta7
1

Step-by-step explanation:

Given : Diameter of base of conical vessel = 80 cm

radius of base of conical vessel 

height of the conical vessel = 72 cm

Thus volume of conical vessels 

38400 π cm3  ...  (1)

Let the conical vessel in filled in x minus than length of water column = 200 x m

length of cylinder = 2000 x cm

and diameter of pipe = 4 cm

Volume of water that flows in x minutes = π × (2 cm)2 × 2000 x cm

 = 8000 π x cm3  ...  (2)

equating (1) and (2) we get

38400 π = 8000 π x

 = 4 minutes 48 seconds

Hence the conical vessel will be filled in 4 minutes 48 seconds

Similar questions