Math, asked by Sundararaj1145, 11 months ago

A cylindrical tank has a capacity 9240cm ^3if its depth is 15 cm then find its diameter

Answers

Answered by brainlyaryan12
6

<body bgcolor="r"><font color =Yellow>

\huge{\orange{\fbox{\fbox{\blue{\bigstar{\mathfrak{\red{Hello\:Mate}}}}}}}}

<marquee scrollamount = 700>♥️♥️♥️</marquee><marquee scrollamount = 500>⭐⭐⭐</marquee>

\huge{\red{\underline{\overline{\mathbf{Question}}}}}

→ A cylindrical tank has a capacity 9240 cm³ if its depth is 15 cm then find its diameter.

\huge{\green{\underline{\overline{\mathbf{Answer}}}}}

⇒Given:

  • ⇒Volume = 9240 cm³
  • ⇒Height = 15 cm

⇒To Find:

  • ⇒Diameter = ?

Solution:-

Using Formula:

\large{ \pi r^2 h = 9240}

\frac{22}{7}\times r^2 \times 15=9240

 r^2=\frac{{\cancel{9240}}^{\large{28}}\times 7}{{\cancel{22}}\times {\cancel{15}}}

r^2=28\times 7

r=\sqrt{196}

\Large{\blue{\fbox{\orange{r=14\:cm}}}}

\huge{\pink{\overbrace{\underbrace{\red{D=28\;cm}}}}}

≿━━━━━━━━━༺❀༻━━━━━━━━━≾

Formulas Used :-

  • Volume of Cylinder -
  • \leadsto \large{\fbox{\pi r^2 h}}

≿━━━━━━━━━༺❀༻━━━━━━━━━≾

\huge{\purple{\bigstar{\blue{\text{Please Follow.. }}}}}<marquee scrollamount = 700>⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️</marquee>

<font color = lime><marquee scrollamount = 10

★━★━★━★━★━★━★━★━★━★━★━★━★━★

▁ ▂ ▄ ▅ ▆ ▇ █♥️ ᗩᖇƳᗩ ♥️█ ▇ ▆ ▅ ▄ ▂ ▁

★━★━★━★━★━★━★━★━★━★━★━★━★━★

Answered by BrainlyPopularman
12

Question :

▪︎ A cylindrical tank has a capacity 9240cm³ if its depth is 15cm then find its diameter = ?

ANSWER :

 \\  \longrightarrow \large \: \: { \pink { \boxed { \bold{ Diameter  = 28 \: cm}}}} \\

GIVEN :

Volume of cylindrical tank = 9240 cm³

• Depth (Height) = 15 cm

TO FIND :

Diameter of cylindrical tank = ?

SOLUTION :

▪︎ We know that Volume of cylinder is –

 \\  \implies { \red{ \boxed{ \bold{volume  \:  \: of \:  \: cylinder \: =\pi {r}^{2}h  }}}} \\

▪︎ Here –

 \\  { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: . \:  \:  \: r \:  = radius \:   }} \\

 \\  { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: . \:  \:  \: h\:  = Height \:  \: of \:  \: Cylinder \:   }} \\

▪︎ Now put the values –

 \\  \implies { \bold{volume  \:  \: of \:  \: cylinder \: =\pi {r}^{2}h  }} \\

 \\  \implies { \bold{9240 = \dfrac{22}{7}  ({r}^{2})(15)  }} \\

 \\  \implies { \bold{ {r}^{2}  =   \frac{9240 \times 7}{22 \times 15} }} \\

 \\  \implies { \bold{ {r}^{2}  =   \cancel \frac{64680}{330} }} \\

 \\  \implies { \bold{ {r}^{2}  =196   }} \\

 \\  \implies { \bold{ r  = \sqrt{196}   }} \\

 \\  \implies { \bold{ r  = 14 \: cm  }} \\

 \\  \longrightarrow { \red{ \bold{ Diameter  = 2 \times radius }}} \\

 \\  \implies { \bold{ Diameter  = 2 \times 14}} \\

 \\  \implies { \boxed{ \bold{ Diameter  = 28 \: cm}}} \\

Similar questions