Math, asked by Irshad123456, 1 year ago

a cylindrical tank has a capacity of 3080 cm .it its depth is 20 cm, find its diameter

Answers

Answered by Juststudent1411
2
volume = 3080 cm³
depth (d)= 20 cm³


volume =πr²d

=> r²=3080/πd

r=√3080/πd cm

diameter =2r
diameter=2√3080/πd cm


put values of π and d u can calculate thw answer
Answered by silentlover45
14

\large\underline\pink{Given:-}

  • Volume of cylinder = 3080 cm²
  • Cylinder of depth = 20 cm

\large\underline\pink{To find:-}

  • Fine the diameter of the base of the cylinder ....?

\large\underline\pink{Solutions:-}

  • Volume of cylinder = πr²h

\: \: \: \: \:  \leadsto \: \: \frac{22}{7} \: \times \: {r}^{2} \: \times \: {20} \: \: = \: \: {3080}

\: \: \: \: \:  \leadsto \: \: {22} \: \times \: {r}^{2} \: \times \: {20} \: \: = \: \: {3080} \: \times \: {7}

\: \: \: \: \:  \leadsto \: \: {r}^{2} \: \times \: {440} \: \: = \: \: {3080} \: \times \: {7}

\: \: \: \: \:  \leadsto \: \: {r}^{2} \: \: = \: \: \frac{{3080} \: \times \: {7}}{440}

\: \: \: \: \:  \leadsto \: \: {r}^{2} \: \: = \: \: \frac{{308} \: \times \: {7}}{44}

\: \: \: \: \:  \leadsto \: \: {r}^{2} \: \: = \: \: {7} \: \times \: {7}

\: \: \: \: \:  \leadsto \: \: {r}^{2} \: \: = \: \: {49}

\: \: \: \: \:  \leadsto \: \: {r} \: \: = \: \: {\sqrt{49}}

\: \: \: \: \:  \leadsto \: \: {r} \: \: = \: \: {7} \: cm.

  • Now, The diameter of the base of the cylinder is 2r.

⟹ 2 × Radius

⟹ 2 × 7

⟹ 14 cm.

  • Hence, The diameter of the base of the cylinder is 14 cm

\large\underline\pink{More \: Information:-}

  • Volume of cylinder ( Area of base × height ).

= (πr²) × h

= πr²h

  • Curved surface = ( Perimeter of base ) × height.

= (2πr) × h

= 2πrh

  • Total surface are = Area of circular ends + curved surface area.

= 2πr² + 2πrh

= 2πr(r + h)

  • Where, r = radius of the circular base of the cylinder.
  • h = height of cylinder.
Similar questions