Math, asked by Anna72008, 8 months ago

A Cylindrical Tank has a capacity of 6160 meter cube. Find Its Depth if its radius is 14m.Also Find the cost of painting it's curved surface at Rs. 3 per meter Square​

Answers

Answered by sonisiddharth751
3

\large\bf\underline\red{Question ➡} \\  \\  \sf \: A  \: Cylindrical \:  Tank  \: has \:  a \:  capacity \:  \\  \sf \:  of \:  6160 \:   {m}^{3} .    \:  Find  \: Its \:  Depth \:  if \:  its \\  \sf \:  radius \:  is \:  14m. \: Also  \: Find   \: th e  \: cost  \:  \\  \sf \: of  \: painting \:  it's  \: curved \:  surface \:  \\  \sf \:  at \:  Rs.  \: 3 per \:  meter \:  Square \: . \\  \\  \\ \large\bf\underline\red{we \: have \: ➡}  \\  \\  ➙ \:  \:  \sf \: volume \: of \: cylinder \:  = 6160 \:  {m}^{3}  \\  \\ ➙ \: \:  \sf  \: radius \: of \: cylinder \:  = 14 \: m \:  \\  \\  \\ \large\bf\underline\red{to \: find \: ➡}  \\  \\ ➥ \:  \sf \: height \: of \: the \: cylindrical \: tank \:  \\  \\ ➥ \:  \sf \: cost  \:   \sf \: of  \: painting \:  it's  \: curved \:  \\ \sf    \:  \:  \:  \: surface \:    \sf \:  at \:  Rs.  \: 3 \: per \:    {m}^{3} \: . \\  \\  \\ \\  \large\bf\underline\red{for \: finding \: height \: ➡} \\  \\   \bf \: volume \: of \: cylinder \:  =  \sf \: \pi {r}^{2} h \\  \\  \\  \bf \underline{put \: the \: above \: value \: we \: get \: } \\ \bf \underline { the \: value \: of \: height \: of \:tank \:  -  } \\  \\➳ \sf \: \pi {r}^{2} h \:  = 6160 \\  \\ ➳ \sf \:  \frac{22}{7}  \times 14 \times 14 \times h = 6160 \\  \\ ➳ \sf \:  \frac{22}{¹ \:   \cancel7}  \times  ² \: \cancel{14} \times 14 \times h \:  = 6160 \\  \\➳  \sf \: 44 \times 14 \times h = 6160 \\  \\  ➳\sf \: h =  \frac{6160}{44 \times 14} \\  \\  ➳\sf \: h \:  =  \frac{ ⁴⁴⁰ \: \cancel{6160}}{44 \times  ¹ \:  \cancel{14} }  \\  \\ ➳ \sf \:h =   \frac{¹ ⁰ \: \cancel{440}}{¹ \:  \cancel{44}}  \\  \\ ➳ \sf \: h \:  = 10 \: m \:  \\  \\  \sf \: there fore \: the \: height \: of \: the \: \\  \sf \:  tank \: is \: \large{\boxed{\mathfrak\red{\fcolorbox{magenta}{aqua}{10 \: m}}}} \\  \\  \\  \bf \underline{  now \: we \: have \: to \: find \: cost \: of}  \:  \\  \bf \underline{  \: painting \:  it's  \: curved \:  surface \: } \\  \bf \underline{ at \:  Rs.  \: 3 per \:  meter \:  Square \: . } \\  \\  \\ \large\bf\underline\red{now \: we \: have \: ➡} \\  \\ ➙ \:  \bf \: height \: of \: tank \:  = \sf10 \: m \:  \\ ➙ \bf \: radius \: of \: tank \:  =  \sf \: 14 \: m \\  \\  \\  \bf \underline{  for \:  finding \: the \: cost \: of}  \:  \\  \bf \underline{  \: painting \:  it's  \: curved \:  surface \: } \\  \bf \underline{ at \:  Rs.  \: 3 per \:  meter \:  Square \:  }  \\  \bf\underline{we \: have \: to \: find \: out \: the \:CSA } \\ \bf\underline{of \: the \: tank \: and \: multiply \: by \: the \: }\\ \bf\underline{ given \: cost} \\  \\  \\ \fbox\red{ CSA \: of \: cylinder   = \: 2Πrh } \\  \\  \\  \sf \underline{put \: the \: above \: value \: we \: get : } \\  \\  \\ ➳ \sf \: 2 \pi rh =2×  \frac{22}{7}  \times 14 \times 10 \\  \\➳ \sf \: 2×  \frac{22}{ ¹ \: \cancel7}  \times ² \: \cancel{14} \:  \times 10 \\  \\ ➳ \sf \:  = 880 \:  {m}^{2}  \\  \\  \\  ➳ \sf \: \therefore \: the \:CSA \: of \: cylindrical \: tank  = \small{\boxed{\mathfrak\red{\fcolorbox{magenta}{aqua}{880 \: m²}}}} \\  \\  \\  \sf \: so \: cost \: of \: painting \: at \: the \: rate \ \: of \\  \sf \: 3 \:  {m}^{2}  \: ➠ \:  ➠ \\  \\  \sf \: 880 \times 3 = \bf \:  26400 \\  \\  \\  \sf \: cost \: of \: painting \: the \: tank \: is \: \small{\boxed{\mathfrak\red{\fcolorbox{magenta}{aqua}{2640 \: Rs}}}} .

Similar questions