A cylindrical tub of radius 12 cm contains water to a depth of 20 cm. spherical iron ball is dropped into the tub and thus the level of water is raised by 6.75 cm. What is the radius of the ball?
Answers
Answered by
4
Answer:
hey mate
here is your answer
if it helps plzz mark as brainliest
Step-by-step explanation:
Solution:-
Radius of the cylinder = 12 cm
Height of the cylinder = 6.75 cm
Let 'r' be the radius of the spherical iron ball.
Volume of the cylinder = volume of the spherical iron ball
πr²h = 4/3πr³
22/7*12*12*6.75 = 4/3*22/7*r³
3 × 12 × 12 × 6.75 = 4r³
2916 = 4r³
r³ = 2916/4
r³ = 729
r = 9 cm
So, the radius of the spherical iron ball is 9 cm.
Answered by
1
Step-by-step explanation:
Volume of cylinder Vc=πr2h
Thus, volume of water in cylinder V1=π×144×20=2880πcm3
After dropping the spherical ball in cylinder new volume
V2=144×20π+34πr3=π×144×26.75
⇒34r3=144(6.75)
r3=729∴r=9cm
Similar questions