Math, asked by jbcartoonlive, 9 hours ago

A cylindrical well is 21 m deep it's outer amd inner diameter are 21 m and 14 m respectively find the cost of renovating the inner curved surface and outer curved surface at the rate of ₹25 per m ²

WHAT Is the ANSWER​

Answers

Answered by kumarsatendra7980
1

Answer:

Its outer and inner diameters are 21m & 14m respectively. Find the cost of renovating the inner curved surface and outer curved surface at the rate of ₹25 per m². And the answer is ₹57,750

Attachments:
Answered by Anonymous
25

Answer:

Given :

  • A cylindrical well is 21 m deep.
  • It's outer and inner diameter are 21 m and 14 m.
  • The cost of renovation is ₹25 per m².

\begin{gathered}\end{gathered}

To Find :

  • The cost of renovating the inner curved surface and outer curved surface at the rate of ₹25 per m².

\begin{gathered}\end{gathered}

Using Formulas :

{\longrightarrow{\small{\underline{\boxed{\sf{R =  \dfrac{D}{2}}}}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{CSA \:  of  \: cylinder = 2\pi rh }}}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{Total  \: area = Area_{(Inner \: cylinder)}  + Area_{(Outer \: cylinder)}}}}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{Cost = Total  \: area  \times   Rate  \: of  \: renovating  \: per  \:  {m}^{2} }}}}}}

Where :-

  • R = radius
  • D = Diameter
  • π 22/7
  • h = Height
  • CSA = Curved surface area

\begin{gathered}\end{gathered}

Solution :

Finding the radius of Inner cylinder :-

{\longrightarrow{\sf{Radius_{(Inner)} =  \dfrac{Diameter}{2}}}}

{\longrightarrow{\sf{Radius_{(Inner)} =  \dfrac{14}{2}}}}

{\longrightarrow{\sf{Radius_{(Inner)} =   \cancel{\dfrac{14}{2}}}}}

{\longrightarrow{\sf{Radius_{(Inner)} = 7\: m}}}

{\bigstar \: {\underline{\boxed{\sf{\red{Radius_{(Inner)} = 7\: m}}}}}}

The radius of inner cylinder is 7 m.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

Finding the radius of Outer cylinder :-

{\longrightarrow{\sf{Radius_{(Outer)} =  \dfrac{Diameter}{2}}}}

{\longrightarrow{\sf{Radius_{(Outer)} =  \dfrac{21}{2}}}}

{\longrightarrow{\sf{Radius_{(Outer)} =  \cancel{\dfrac{21}{2}}}}}

{\longrightarrow{\sf{Radius_{(Outer)} = 10.5 \: m}}}

{\bigstar \: {\underline{\boxed{\sf{\red{Radius_{(Outer)} = 10.5\: m}}}}}}

The radius of Outer cylinder is 10.5 m.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

Finding curved surface area of Inner cylinder :-

{\longrightarrow{\sf{CSA_{(Inner \: cylinder)} = 2\pi rh }}}

{\longrightarrow{\sf{CSA_{(Inner \: cylinder)} = 2  \times \dfrac{22}{7} \times 7 \times 21 }}}

{\longrightarrow{\sf{CSA_{(Inner \: cylinder)} = 2  \times \dfrac{22}{\cancel{7}} \times  \cancel{7} \times 21 }}}

{\longrightarrow{\sf{CSA_{(Inner \: cylinder)} = 2  \times 22 \times 21 }}}

{\longrightarrow{\sf{CSA_{(Inner \: cylinder)} = 44\times 21 }}}

{\longrightarrow{\sf{CSA_{(Inner \: cylinder)} = 924 \:  {m}^{2}}}}

{\bigstar \: {\underline{\boxed{\sf{\red{CSA_{(Inner \: cylinder)} = 924 \:  {m}^{2}}}}}}}

∴ The CSA of inner circle is 924 m².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

Finding curved surface area of Outer cylinder :-

{\longrightarrow{\sf{CSA_{(Outer\: cylinder)} = 2\pi rh }}}

{\longrightarrow{\sf{CSA_{(Outer\: cylinder)} = 2 \times  \dfrac{22}{7} \times 10.5  \times 21 }}}

{\longrightarrow{\sf{CSA_{(Outer\: cylinder)} = 2 \times \dfrac{22}{\cancel{7}} \times 10.5  \times  \cancel{21} }}}

{\longrightarrow{\sf{CSA_{(Outer\: cylinder)} = 2 \times 22\times 10.5  \times  3}}}

{\longrightarrow{\sf{CSA_{(Outer\: cylinder)} = 44\times 31.5}}}

{\longrightarrow{\sf{CSA_{(Outer\: cylinder)} =1386 \:  {m}^{2}}}}

{\bigstar \: {\underline{\boxed{\sf{\red{CSA_{(Outer\: cylinder)} =1386 \:  {m}^{2}}}}}}}

∴ The CSA of outer circle is 1386 m².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

Finding total area of outer and inner cylinder :-

{\longrightarrow{\sf{Total  \: area = Area_{(Inner \: cylinder)}  + Area_{(Outer \: cylinder)}}}}

{\longrightarrow{\sf{Total  \: area = 924 +1386}}}

{\longrightarrow{\sf{Total  \: area = 2310 \:  {m}^{2}}}}

{\bigstar{\underline{\boxed{\sf{\red{Total  \: area = 2310 \:  {m}^{2}}}}}}}

∴ The total area is 2310 m².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

Now, finding the total cost of renovating cylinder well at the rate of ₹25 m² :-

{\longrightarrow{\sf{Cost = Total  \: area  \times   Rate  \: of  \: renovating  \: per  \:  {m}^{2}}}}

{\longrightarrow{\sf{Cost = 2310  \times  25}}}

{\longrightarrow{\sf{Cost = Rs.57750}}}

{\bigstar \: {\underline{\boxed{\sf{\red{Cost = Rs.57750}}}}}}

∴ The total cost of renovating cylindrical well is Rs.57750.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

Learn More :

\begin{gathered}\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}\end{gathered}

{\underline{\rule{220pt}{2.5pt}}}

Similar questions