A diamater of roller 42cmand length 120cmits take 500revolution level a play ground and find its area
Answers
Answered by
35
----------------------------------------
Here is the solution:
----------------------------------------
Find the radius:
Radius = Diameter ÷ 2
Radius = 42 ÷ 2 = 21 cm
Find 1 revolution:
I revolution = 2πrh
1 revolution = 2π(21)(120) = 15840 cm²
Find 500 revolutions:
1 revolution = 15,840 cm²
500 revolutions = 12840 x 500 = 7,920,000 cm²
Find in m²:
7,920,000 cm² = 7,920,000 ÷ 100 ÷ 100 = 792 m²
Answer: The area is 792 m²
Answered by
35
◻️◽
◽◻️
![\bold {\underline {We have, }} \bold {\underline {We have, }}](https://tex.z-dn.net/?f=+%5Cbold+%7B%5Cunderline+%7BWe+have%2C+%7D%7D+)
Diameter = 42 m
Length = 120 cm
Revolution = 500
![\bold {\underline {Now, }} \bold {\underline {Now, }}](https://tex.z-dn.net/?f=+%5Cbold+%7B%5Cunderline+%7BNow%2C+%7D%7D+)
Radius
= Diameter/2
= 42/2 = 21 cm
1 revolution = 2πrh
= 2π(21)(120)
= 15840 cm²
1 revolution = 15840 cm²
![\bold {\underline {So, }} \bold {\underline {So, }}](https://tex.z-dn.net/?f=+%5Cbold+%7B%5Cunderline+%7BSo%2C+%7D%7D+)
500 revolutions
= 12840 x 500
= 7920000 cm²
Convert into m²
7920000 cm²
= (7920000) /100 × 100
= 7920000/10000
= 792 m²
![\bold {\underline {Hence, }} \bold {\underline {Hence, }}](https://tex.z-dn.net/?f=+%5Cbold+%7B%5Cunderline+%7BHence%2C+%7D%7D+)
![\bold {The ~area~ is ~792 ~m^2 } \bold {The ~area~ is ~792 ~m^2 }](https://tex.z-dn.net/?f=+%5Cbold+%7BThe+%7Earea%7E+is+%7E792+%7Em%5E2+%7D+)
Diameter = 42 m
Length = 120 cm
Revolution = 500
Radius
= Diameter/2
= 42/2 = 21 cm
1 revolution = 2πrh
= 2π(21)(120)
= 15840 cm²
1 revolution = 15840 cm²
500 revolutions
= 12840 x 500
= 7920000 cm²
Convert into m²
7920000 cm²
= (7920000) /100 × 100
= 7920000/10000
= 792 m²
Anonymous:
thanks
Similar questions