Math, asked by asiaarshad777, 2 months ago

A dice is rolled n times. If the probability of at least one 6 is to be greater or
equal to 1/2, find n.​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

A dice is rolled 'n' times.

Let p represents the probability of getting 6

and q represents the probability of not getting 6.

Probability of getting 6 is given by,

\rm :\longmapsto\:p = \dfrac{1}{6}

and

Probability of not getting 6 is given by

\rm :\longmapsto\:q = \dfrac{5}{6}

We know,

Binomial Distribution consisting of n independent trials is given by

 \boxed{ \bf{P(r)\:  =  \:  ^nC_r   \: {p}^{r} \:  {q}^{n - r}  }}

where,

  • n is number of independent trials

  • p is probability of success

  • q is probability of failure

  • r is random variable

It is given that

\rm :\longmapsto\:P(getting \: atleast \: 1 \: six)  \geqslant \dfrac{1}{2}

\rm :\longmapsto\:P(1) + P(2) + P(3) +  -  -  -  + P(n) \geqslant \dfrac{1}{2}

\rm :\longmapsto\:1 - P(0)  \geqslant \dfrac{1}{2}

\rm :\longmapsto\: - P(0)  \geqslant \dfrac{1}{2}  - 1

\rm :\longmapsto\: - P(0)  \geqslant \dfrac{1 - 2}{2}

\rm :\longmapsto\: - P(0)  \geqslant \dfrac{ - 1}{2}

\rm :\longmapsto\:P(0)  \leqslant \dfrac{1}{2}

\rm :\longmapsto\: ^nC_0 \:  {p}^{0} {q}^{n} \:  \leqslant \dfrac{1}{2}

\rm :\longmapsto\:1 \times 1 \times  {\bigg(\dfrac{5}{6} \bigg) }^{n} \leqslant \dfrac{1}{2}

\rm :\longmapsto\:  {\bigg(\dfrac{5}{6} \bigg) }^{n} \leqslant \dfrac{1}{2}

\rm :\longmapsto\:  {\bigg(\dfrac{6}{5} \bigg) }^{n} \geqslant 2

\rm :\longmapsto\: {6}^{n} \geqslant 2 \times  {5}^{n}

Now, using hit and trial method

For n = 1

\rm :\longmapsto\:6 \geqslant 10

not possible.

For n = 2

\rm :\longmapsto\:36 \geqslant 50

not possible.

For n = 3

\rm :\longmapsto\:216 \geqslant 250

not possible.

For n = 4

\rm :\longmapsto\:1296 \geqslant 1250

which is true.

\bf\implies \:n \geqslant 4

Additional Information :-

In Binomial Distribution,

  • Mean of Binomial Distribution = np

  • Variance of Binomial Distribution = npq

  • Mean > Variance

where,

  • n is number of independent trials

  • p is probability of success

  • q is probability of failure

  • r is random variable

Similar questions