Math, asked by twinklesachdewanitwi, 11 months ago

a dice is thrown twice find the probability of getting first same number second different numbers third consecutive numbers fourth alternative numbers

Answers

Answered by Anonymous
56

\Huge{\underline{\underline{\mathfrak{Question \colon}}}}

A dice is thrown twice find the probability of getting :

a) Same Numbers

b) Different Numbers

c) Consecutive Numbers

d) Alternate Numbers

\Huge{\underline{\underline{\mathfrak{Answers \colon }}}}

A dice is thrown twice.

Total no.of outcomes would be : 36

Outcomes would be :

\boxed{\begin{minipage}{7 cm} \large{\tt{11 \ 12 \ 13 \ 14 \ 15 \ 16}} \\  \large{\tt{21 \ 22 \ 23 \ 24 \ 25 \ 26}} \\ \large{\tt{31 \ 32 \ 33 \ 34 \ 35 \ 36}} \\ \large{\tt{41 \ 42 \ 43 \ 44 \ 45 \ 46}} \\ \large{\tt{51 \ 52 \ 53 \ 54 \ 55 \ 56}} \\ \large{\tt{61 \ 62 \ 63 \ 64 \ 65 \ 66}} \end{minipage}}

Using the Formula,

 \huge{ \boxed{ \sf{p(e) =  \frac{favourable \: outcomes}{total \: no.of \: outcomes} }}}

a) Let A be the given emperical event

  • A = Same Numbers i.e, 11,22,33,.......,66

Now,

P(A) = 6/36

→ P(A) = 1/6

b) Let B be the given event

  • B = Different Numbers i.e., 16,12 etc

  \huge{\boxed{ \sf{p( \bar{e}) = 1 - p(e)}}}

Implies,

P(B) = 1 - P(A)

→ P(B) = 1 - 1/6

→ P = 5/6

c) Let C be the given emperical event

  • C = Consecutive Numbers like 12,23,.......,56

Now,

P(C) = 5/36

d) Let D be the given emperical event

  • D = Alternate Numbers i.e., 13,24,35,46,64,53,42 and 31 » 10

Now,

P(D) = 10/36

→ P(D) = 5/18

Note

  • Probability of an event should always be expressed in simple fractions
Answered by Anonymous
103

\large{\underline{\underline{\mathfrak{\blue{\sf{Correct\:question-}}}}}}

A dice is thrown twice. Find the probability of getting-

  1. Same number
  2. Different numbers
  3. Consecutive numbers
  4. Alternative numbers

\large{\underline{\underline{\mathfrak{\blue{\sf{Answer-}}}}}}

★ Probability of getting a same number = \sf{\dfrac{1}{6}}

★ Probability of getting different numbers = \sf{\dfrac{5}{6}}

★ Probability of getting consecutive numbers = \sf{\dfrac{5}{36}}

★ Probability of getting alternate numbers = \sf{\dfrac{5}{18}}

\large{\underline{\underline{\mathfrak{\blue{\sf{Explanation-}}}}}}

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

_________________________

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Outcomes :

(1,1) ⠀⠀(1,2) ⠀⠀(1,3) ⠀⠀(1,4) ⠀⠀(1,5) ⠀⠀(1,6)

(2,1) ⠀⠀(2,2) ⠀⠀(2,3) ⠀⠀(2,4) ⠀⠀(2,5) ⠀⠀(2,6)

(3,1) ⠀⠀(3,2) ⠀⠀(3,3) ⠀⠀(3,4) ⠀⠀(3,5) ⠀⠀(3,6)

(4,1) ⠀⠀(4,2) ⠀⠀(4,3) ⠀⠀(4,4) ⠀⠀(4,5) ⠀⠀(4,6)⠀⠀

(5,1) ⠀⠀(5,2) ⠀⠀(5,3) ⠀⠀(5,4) ⠀⠀(5,5) ⠀⠀(5,6)

(6,1) ⠀⠀(6,2) ⠀⠀(6,3) ⠀⠀(6,4) ⠀⠀(6,5) ⠀⠀(6,6)

_________________________

\large{\underline{\boxed{\mathfrak{\sf{\pink{Total\:Number\:of\:Outcomes=36}}}}}}

General formula for finding probability of an event :

\large{\underline{\boxed{\mathfrak{\sf{\green{P(e)=\dfrac{Favourable\:Outcomes}{Total\:outcomes}}}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

_______________________________

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

A dice is thrown twice, probability of getting the same number : \bold{\sf{\dfrac{1}{6}}}

Here, favourable outcomes = (1,1); (2,2); (3,3); (4,4); (5,5); (6,6)

Favourable outcomes = 6

Probability of getting a same number :

\sf{\dfrac{Favourable\:outcomes}{Total\:Outcomes}}

\implies Probability of getting a same number = \sf{\cancel{\dfrac{6}{36}}}

\implies Probability of getting a same number = \red{\sf{\dfrac{1}{6}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

_______________________________

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

A dice is thrown twice, probability of getting different numbers : \bold{\sf{\dfrac{5}{6}}}

Here, favourable outcomes = 36 - 6 = 30

Probability of getting different numbers :

\sf{\dfrac{Favourable\:outcomes}{Total\:Outcomes}}

Probability of getting different numbers = \sf{\cancel{\dfrac{30}{36}}}

Probability of getting different numbers = \red{\sf{\dfrac{5}{6}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

_______________________________

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

A dice is thrown twice, probability of getting consecutive numbers : \bold{\sf{\dfrac{5}{36}}}

Here, favourable outcomes = (1,2); (2,3); (3,4); (4,5); (5,6)

Favourable outcomes = 5

Probability of getting consecutive numbers :

\sf{\dfrac{Favourable\:outcomes}{Total\:Outcomes}}

Probability of getting consecutive numbers = \red{\sf{\dfrac{5}{36}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

_______________________________

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

A dice is thrown twice, probability of getting alternate numbers : \bold{\sf{\dfrac{5}{18}}}

Here, Alternate numbers = (1,3); (2,4); (3,5); .....

Favourable outcomes = 10

Probability of getting alternate numbers :

\sf{\dfrac{Favourable\:outcomes}{Total\:Outcomes}}

Probability of getting alternate numbers = \sf{\cancel{\dfrac{10}{36}}}

Probability of getting alternate numbers = \red{\sf{\dfrac{5}{18}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

_________________________

#answerwithquality

#BAL

Similar questions