Math, asked by TbiaSupreme, 1 year ago

A die is thrown once. Find the probability of getting(i) a prime number; (ii) a number lying between 2 and 6; (iii) an odd number.

Answers

Answered by PalakGusain
1
Favourable number of outcomes = 1,2,3,4,5,6
(i) {2,3,5} = 3/6 = 1/2
(ii){3,4,5} = 3/6 = 1/2
(iii){1,3,5} = 3/6 = 1/2
Answered by Anonymous
23

\huge{\underline{\underline{\sf{\orange{SOLUTION:-}}}}}

\sf{\underline{\red{Answer-}}}

  • \sf \: Prime \: Number  = \frac{1}{2}

  • \sf Number \: Lying \: between \: 2 \: and \: 6  = \frac{1}{2}

  • \sf \: An \: Odd \: Number= \:  \frac{1}{2}

\sf{\underline{\red{We\:Have\:To\:Find-}}}

  • (i) A prime number.

  • (ii) A number lying between 2 and 6.

  • (iii) An odd number.

\sf{\underline{\red{Formula\:used\: here-}}}

\bigstar \:  \:  \:  \: \boxed {\sf\: {P= \frac{Number \: of \: favourable \: outcomes}{Total \: number \: of \: outcomes}}}

\sf{\underline{\red{Explanation-}}}

\sf \: Possible \: numbers \: of \: Outcomes\:While \: throwing \: a \: dice=6

\sf \: Numbers \: on \: a \: dice \: =1,2,3,4,5 \: and \: 6

⠀⠀

\bf\orange{A \: Prime \: Number - }

⠀⠀

\sf \: Prime \: numbers \: we \: can \: get= 2,3 \: and \: 5

\sf \: Number \: of \: favourable \: outcome=3

\sf \: Probability \: of \: being \: prime \: number \:   = \frac{3}{6}  =  \frac{1}{2}

⠀⠀

\bf\orange{A \: number \: lying \: between \: 2 \: and \:6- }

⠀⠀

\sf  \:Numbers \: we \: can \: get= 3, \:4 \: and \: 5

\sf \: Number \: of \: favourable \: outcome=3

\sf \: Probability \: of \: number\: between \: 2 \: and \: 6 \:   = \frac{3}{6}  =  \frac{1}{2}

⠀⠀

\bf\orange{ An \: Odd\: number - }

⠀⠀

\sf  \:Odd \: Numbers \: we \: can \: get= 1, \: 3\: and \: 5

\sf \: Number \: of \: favourable \: outcome=3

\sf \: Probability \: of \: being \: an \: odd \: number \:   = \frac{3}{6}  =  \frac{1}{2}

Similar questions