A disc of moment of inertia 1.5 kilogram metre square is initially at rest. it is acted upon by a constant torque of 120 Newton metre for 5 second. find the final angular momentum and kinetic energy of the disc
Answers
Given :
To Find :
Formula :
Calculation :
Answer:
- Angular Momentum (L) of the disc is 600 Kg-m² / sec.
- Kinetic Energy (K.E) of the disc is 120 Kilo Joules.
Given:
- Moment of Inertia (I) = 1.5 Kg-m².
- Torque (τ) = 120 N-m
- Time Period (t) = 5 Seconds.
Explanation:
__________________________
From the relation we know,
⇒ τ = I α
Where,
- τ Denotes Torque.
- I Denotes Moment of inertia.
- α denotes Angular Acceleration.
Now,
⇒ τ = I α
Substituting the values,
⇒ 120 = 1.5 × α
⇒ α = 120 / 1.5
⇒ α = 1200 / 15
⇒ α = 80
⇒ ω / t = 80 ∵ [ α = ω / t ]
⇒ ω / 5 = 80
⇒ ω = 80 × 5
⇒ ω = 400
⇒ ω = 400 rad/sec ___[ 1 ]
__________________________
__________________________
From the relation we know,
⇒ L = I ω
Where,
- L Denotes Angular momentum.
- I Denotes Moment of inertia.
- ω denotes Angular velocity.
Now,
⇒ L = I ω
Substituting the values,
⇒ L = 1.5 Kg-m² × 400 rad/sec [ From Equation - 1 ]
⇒ L = 1.5 × 400
⇒ L = 15 × 40
⇒ L = 600
⇒ L = 600 Kg-m² / sec.
∴ Angular Momentum of the disc is 600 Kg-m² / sec.
__________________________
__________________________
From the relation we know,
⇒ K.E = 1 / 2 I ω²
Where,
- K.E Denotes Kinetic Energy.
- I Denotes Moment of inertia.
- ω denotes Angular velocity.
Now,
⇒ K.E = 1 / 2 I ω²
Substituting the values,
⇒ K.E = 1 / 2 × 1.5 × ( 400 )² [ From Equation - 1 ]
⇒ K.E = 1 / 2 × 1.5 × 160000
⇒ K.E = 1.5 × 80000
⇒ K.E = 15 × 8000
⇒ K.E = 120000
⇒ K.E = 120 × 10³
⇒ K.E = 120 K J
∴ Kinetic Energy (K.E) of the disc is 120 Kilo Joules.
__________________________