Physics, asked by NIYASKP, 9 months ago

A disc of moment of inertia 1.5 kilogram metre square is initially at rest. it is acted upon by a constant torque of 120 Newton metre for 5 second. find the final angular momentum and kinetic energy of the disc​

Answers

Answered by Anonymous
5

 \underline{\boxed{ \huge\purple{ \rm{Answer}}}}

Given :

 \rm \: moment \: of \: inertia = 1.5 \: kg {m}^{2}  \\  \rm \: torque = 120 \: Nm \\  \rm \: time = 5 \: s

To Find :

 \rm \: final \: angular \: momentum \: and \: kinetic \: energy.

Formula :

 \rm \: angular \: momentum \:  \red{L = I \omega} \\  \\ \rm \: kinetic \: energy =   \blue{\frac{1}{2} I { \omega}^{2} }

Calculation :

 \implies \rm \:  \tau = I \alpha = I( \frac{ \omega}{t}) \\  \\  \implies \rm \:  \omega =  \frac{ \tau{t}}{I}   =  \frac{120 \times 5}{1.5}  = 400 \:  \frac{rad}{s}  \\  \\  \implies \rm \: L = i \omega = 1.5 \times 400 =  \green{600 \: kg \frac{ {m}^{2} }{s} } \\  \\  \implies \rm \: KE =  \frac{1}{2} I { \omega}^{2}  =  \frac{1}{2}  \times 1.5 \times  {400}^{2}  =  \orange{120 \: KJ}

Answered by ShivamKashyap08
9

Answer:

  • Angular Momentum (L) of the disc is 600 Kg-m² / sec.
  • Kinetic Energy (K.E) of the disc is 120 Kilo Joules.

Given:

  1. Moment of Inertia (I) = 1.5 Kg-m².
  2. Torque (τ) = 120 N-m
  3. Time Period (t) = 5 Seconds.

Explanation:

__________________________

From the relation we know,

τ = I α

Where,

  • τ Denotes Torque.
  • I Denotes Moment of inertia.
  • α denotes Angular Acceleration.

Now,

⇒ τ = I α

Substituting the values,

⇒ 120 = 1.5 × α

⇒ α = 120 / 1.5

⇒ α = 1200 / 15

⇒ α = 80

⇒ ω / t = 80   ∵ [ α = ω / t ]

⇒ ω / 5 = 80

⇒ ω = 80 × 5

⇒ ω = 400

ω = 400 rad/sec ___[ 1 ]

__________________________

__________________________

From the relation we know,

L = I ω

Where,

  • L Denotes Angular momentum.
  • I Denotes Moment of inertia.
  • ω denotes Angular velocity.

Now,

⇒ L = I ω

Substituting the values,

⇒ L = 1.5 Kg-m² × 400 rad/sec  [ From Equation - 1 ]

⇒ L = 1.5 × 400

⇒ L = 15 × 40

⇒ L = 600

L = 600 Kg-m² / sec.

Angular Momentum of the disc is 600 Kg-m² / sec.

__________________________

__________________________

From the relation we know,

K.E = 1 / 2 I ω²

Where,

  • K.E Denotes Kinetic Energy.
  • I Denotes Moment of inertia.
  • ω denotes Angular velocity.

Now,

⇒ K.E = 1 / 2 I ω²

Substituting the values,

⇒ K.E = 1 / 2 × 1.5 × ( 400 )²   [ From Equation - 1 ]

⇒ K.E = 1 / 2 × 1.5 × 160000

⇒ K.E = 1.5 × 80000

⇒ K.E = 15 × 8000

⇒ K.E = 120000

⇒ K.E = 120 × 10³

K.E = 120 K J

Kinetic Energy (K.E) of the disc is 120 Kilo Joules.

__________________________

Similar questions