Math, asked by sheilagiresh, 10 days ago

.. A discount of 15% is given on the marked price of an article which is sold for Rs-2975. If the marked price is 40% above the cost price, calculate the profit in Rs. made by the sale of the article?​

Answers

Answered by aryan418436
19

I hope this helpful for you

Attachments:
Answered by mathdude500
38

\large\underline{\sf{Solution-}}

Given that,

A discount of 15% is given on the marked price of an article which is sold for Rs-2975. If the marked price is 40% above the cost price.

Let assume that

Marked Price of an Article is Rs x

Discount % = 15 %

Selling Price = Rs 2975

We know that,

\boxed{\sf{  \:Marked\:Price = \dfrac{Selling \: Price \times 100}{100 - Discount\%}  \: }} \\

So, on substituting the values, we get

\rm \: x = \dfrac{2975 \times 100}{100 - 15}  \\

\rm \: x = \dfrac{2975 \times 100}{85}  \\

\rm \: x = 35 \times 100 \\

\rm\implies \:x = 3500 \\

\rm\implies \:Marked\:Price \:  = \:  Rs \: 3500 \\

Now, further given that Marked price is 40 % above the cost price.

\rm \: Marked\:Price = Cost\:Price + 40\% \: of \: Cost\:Price \\

\rm \:Cost\:Price + \dfrac{40}{100} \times Cost\:Price =  3500

\rm \:Cost\:Price + \dfrac{2}{5} \times Cost\:Price =  3500

\rm \: \dfrac{7}{5} \times Cost\:Price =  3500

\rm \: \dfrac{1}{5} \times Cost\:Price =  500

\rm\implies \:Cost\:Price \:  =  \: Rs \: 2500 \\

Now, We have

\rm \: Cost\:Price \:  =  \: Rs \: 2500 \\

\rm \: Selling \: Price \:  =  \: Rs \: 2975 \\

Since, Selling Price > Cost Price

So, it means there is Profit in this transaction.

Thus,

\rm \: Profit \:  =  \: Selling \: Price \:  -  \: Cost\:Price \\

\rm \: Profit \:  =  \: 2975 - 2500 \\

\rm\implies \:Profit \:  =  \: Rs \: 475 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions