Math, asked by melchizedek3800, 8 months ago

A discount series of 10% ,20%,40%is equivalent to a single discount of

Answers

Answered by shadowsabers03
5

Let the initial price of the article be x.

After a discount of 10\%, the new price of the article will be,

\longrightarrow x_1=\left[1-\dfrac{10}{100}\right]x

\longrightarrow x_1=\dfrac{90}{100}\,x\quad\quad\dots(1)

After a discount of 20\%, the new price of the article will be,

\longrightarrow x_2=\left[1-\dfrac{20}{100}\right]x_1

\longrightarrow x_2=\dfrac{80}{100}\,x_1

From (1),

\longrightarrow x_2=\dfrac{80}{100}\times\dfrac{90}{100}\,x

\longrightarrow x_2=\dfrac{72}{100}\,x\quad\quad\dots(2)

After a discount of 30\%, the new price of the article will be,

\longrightarrow x_3=\left[1-\dfrac{40}{100}\right]x_2

\longrightarrow x_3=\dfrac{60}{100}\,x_2

From (2),

\longrightarrow x_3=\dfrac{60}{100}\times\dfrac{72}{100}\,x

\longrightarrow x_3=\dfrac{43.2}{100}\,x\quad\quad\dots(3)

So the single discount of this reduction is,

\longrightarrow d=\dfrac{x-x_3}{x}\times100

From (3),

\longrightarrow d=\dfrac{x-\dfrac{43.2}{100}\,x}{x}\times100

\longrightarrow d=\dfrac{\left[1-\dfrac{43.2}{100}\right]x}{x}\times100

\longrightarrow d=\left[1-\dfrac{43.2}{100}\right]\times100

\longrightarrow d=\dfrac{100-43.2}{100}\times100

\longrightarrow\underline{\underline{d=56.8\%}}

So the discount series is equivalent to a single discount of \bf{56.8\%}.

Similar questions