A displacement B of 100m from the origin at the angle of 37° above the x-axis is the result of three successive displacement b1 of 100m along a negative x- axis and displacement b2 of 200m at the angle of 150°above the x- axis and displacement b2 , find b3
Answers
A displacement B of 100m from the origin at the angle of 37° above the x-axis is the result of three successive displacement b1 of 100m along a negative x- axis and displacement b2 of 200m at the angle of 150°above the x- axis and displacement b2.
so, B = 100 cos37° i + 100 sin37° j
= 80 i + 60 j
b1 = -100 i
b2 = 200cos150° i + 200sin150° j
= -100√3 i + 100 j
here, B = b1 + b2 + b3
⇒80i + 60 j = -100i - 100√3 i + 100j + b3
⇒80i + 60j = -100(1 + √3)i + 100j + b3
⇒b3 = (180 + 100√3)i - 40j
magnitude of b3 = √{(180 + 100√3)² + (-40)²} ≈ 355m
angle made by b3 =360° - tan-¹[ 40/(180 + 100√3)]
= 360 - 6.46 = 353.54°
B = 100 cos37° i + 100 sin37° j
= 80 i + 60 j
b1 = -100 i
b2 = 200cos150° i + 200sin150° j
= -100√3 i + 100 j
here, B = b1 + b2 + b3
⇒80i + 60 j = -100i - 100√3 i + 100j + b3
⇒80i + 60j = -100(1 + √3)i + 100j + b3
⇒b3 = (180 + 100√3)i - 40j
magnitude of b3 = √{(180 + 100√3)² + (-40)²} ≈ 355m
angle made by b3 =360° - tan-¹[ 40/(180 + 100√3)]
= 360 - 6.46 = 353.54°