A district contains 64000 inhabitants. if the population increases at the rate of 2/2/1% per annum find the number of inhabitants at the end of 3 year
Answers
Question:-
A district contains 64000 inhabitants. if the population increases at the rate of. 2 2/1% per annum find the number of inhabitants at the end of 3 year
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Solution:-
Given:-
- A district contains 64000 inhabitants
- Rate:- 2 2/1
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
To Find:-
- number of inhabitants at the end of 3 year
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Here, the initial population, P = 64000
Annual rate of interest,
- And, time, t = 3 years
Hence, the population after 3 years is,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
- Hence, the number of inhabitants at the end of 3 years is 68921.
Answer:
A district contains 64000 inhabitants
Rate:- 2 2/1
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
To Find:-
number of inhabitants at the end of 3 year
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Here, the initial population, P = 64000
Annual rate of interest,\begin{gathered} \sf \: r = 2 \: \: \: \frac{1}{2}\%=\frac{5}{2} \\ \end{gathered}
r=2
2
1
%=
2
5
And, time, t = 3 years
Hence, the population after 3 years is,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
\begin{gathered} \sf \: A = P \bigg( \: \: 1+\frac{r}{100} \: \: \bigg)^t \\ \end{gathered}
A=P(1+
100
r
)
t
\begin{gathered} \sf \:\longrightarrow 64000 \bigg( \: \: 1+\frac{ \dfrac{5}{2}}{100} \: \: \bigg)\\ \\ \sf =64000\bigg(1+\frac{5}{200}\bigg) \\ \\ \sf \:\longrightarrow 64000\times \frac{205}{200} \\ \\ \qquad \sf \longrightarrow\frac{13120000}{200} \\ \\ \qquad\longrightarrow \underline{ \boxed{ \sf \purple{68921} }}\end{gathered}
⟶64000(1+
100
2
5
)
=64000(1+
200
5
)
⟶64000×
200
205
⟶
200
13120000
⟶
68921
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Hence, the number of inhabitants at the end of 3 years is 68921.