A double cone is formed by revolving a right angled triangle having sides 5cm, 12cm and 13cm about its hypotenuse. Find total surface area and volume of double cone. Answer this question and get 50 points!!!
Answers
Total surface area = 246.5 cm² & Total Volume = 290 cm³ if Double cone is formed by revolving right angled triangle having sides 5cm, 12cm and 13cm about its hypotenuse
Step-by-step explanation:
Right angle triangle is revolved about the hypotenuse AC, the figure so formed is a double cone.
Attached is figure
In triangle ABC,
AB = 5 cm
AC = 12 cm
BC = 13 cm
OB = h₁
OC = h₂
OA = OD = r
h₁ + h₂ = 13
5² =h₁² + r²
12² = h₂² + r²
=> 12² - 5² = h₂² - h₁²
=> 144 - 25 = (h₂+ h₁)(h₂ - h₁)
=> 119 = 13(h₂ - h₁)
=> h₂ - h₁ =119/13
h₁ + h₂ = 13
=> h₁ = 25/13
=> h₂ = 144/13
5² =h₁² + r² or 12² = h₂² + r²
=> r² = 25 - (625/169) or 144 - (144²/169)
=> r² = 25 * 144/169
=> r = 5 * 12 /13
=> r = 60/13
total surface area = Curved surface are of both
= π * (60/13) * 5 + π * (60/13) * 12
= π * 60 * 17 /13
= 246.5 cm²
Total Volume = Volume of both cone
= (1/3)π (60/13)² * (25/13) + (1/3)π (60/13)² * (144/13)
= ( (1/3)π 3600 / 169 ) * 13
= 1200 π / 13
= 290 cm³
Learn more:
A right triangle With sides 3cm,4cm and 5cm is revolved around its ...
https://brainly.in/question/81493
A right angled triangle PQR where angle Q = 90° is rotated about ...
https://brainly.in/question/13305606
A right angled triangle PQR where angle Q is 90degree.if QR =16 ...
https://brainly.in/question/9123359
Hello Dear User,
Question :-
A double cone is formed by revolving a right angled triangle having sides 5cm, 12cm and 13cm about its hypotenuse. Find total surface area and volume of double cone.
Answer :-
Total surface area = 246.5 cm²
Total Volume = 290 cm³
Explanation :-
Given :
AB = 5 cm
AC = 12 cm
BC = 13 cm
Let :
OB = h₁
OC = h₂
-----------------------------------
OA = OD = r
h₁ + h₂ = 13 (A.T.Q)
5² =h₁² + r²
12² = h₂² + r²
=> 12² - 5² = h₂² - h₁²
=> 144 - 25 = (h₂+ h₁)(h₂ - h₁)
=> 119 = 13(h₂ - h₁)
=> h₂ - h₁ =119/13
h₁ + h₂ = 13
=> h₁ = 25/13
=> h₂ = 144/13
5² =h₁² + r² or 12² = h₂² + r²
=> r² = 25 - (625/169) or 144 - (144²/169)
=> r² = 25 * 144/169
=> r = 5 * 12 /13
=> r = 60/13
------------------------------------------------
total surface area = Curved surface are of both
= π * (60/13) * 5 + π * (60/13) * 12
= π * 60 * 17 /13
= 246.5 cm²
------------------------------------------------
Total Volume = Volume of both cone
= (1/3)π (60/13)² * (25/13) + (1/3)π (60/13)² * (144/13)
= ( (1/3)π 3600 / 169 ) * 13
= 1200 π / 13
= 290 cm³
Additional Information :-
Glad to help