Physics, asked by sabihabanu086, 5 months ago

A double convex lens has two surfaces of equal radii
'R and refractive index n = 1.5. find the focal
length
please I want step by step answer
do fast I will mark you as brainlist if you give me answer step by step​
please do it​

Answers

Answered by lalith2004ky
0

Answer:

R1 = R2 = R

n = 1.5

f = ?

By Lens maker's formula,

 \frac{1}{f}  = (n - 1)( \frac{1}{r_{1} }   +  \frac{1}{ r_{2} } ) \:  \:  \:  \:  \:  \\  = (1.5 - 1)( \frac{1}{r}   +  \frac{1}{r}  ) \\  = 0.5( \frac{2}{r} ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  =  \frac{1}{2}  \times  \frac{2}{r}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  =  \frac{1}{r } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\  \\  =   >  \frac{1}{f }  =  \frac{1}{r}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  =  > f = r \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

The focal length will be equal to the Radius of curvature of the biconvex lens.

Similar questions