Math, asked by dipchaudhary9, 3 months ago

a drawing paper has a length of 60 centimetre and the breadth of 36 how many square boxes of length 10 cm can be drawn on this drawing paper?​

Answers

Answered by Anonymous
113

⠀⠀⠀⠀⠀⠀⠀⠀

{\underline{\boxed{\mathcal{\pmb{\quad GIVEN\quad}}}}}⠀⠀⠀⠀⠀⠀⠀⠀⠀

\qquad \red\star\: {\sf{Length\: of \: a \: drawing\: paper = 60 cm}}

\qquad \red\star\: {\sf{Breadth\: of \: a \: drawing\: paper = 36cm}}

\qquad \red\star\: {\sf{Length\: of \: a \: square\: box = 10cm}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\underline{\boxed{\mathcal{\pmb{\quad FIND\:OUT \qquad}}}}}⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • How many square boxes of length 10 cm can be drawn on this drawing paper?

⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\underline{\boxed{\mathcal{\pmb{\quad SOLUTION\quad}}}}}⠀⠀⠀⠀⠀⠀⠀⠀⠀

As we know that

⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Area of a rectangle = length × breadth

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\qquad{\underline{\underline{\green{\frak{\pmb{\quad According\:to\:the\:question \quad}}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Area of a drawing paper = Area of a rectangle

\implies\sf length \times breadth \\\\

\implies\sf 60 \times 36 \\\\

\implies\sf 2160cm^2\\\\

Now let's find out area of a square box

\implies\sf side \times side \\\\

\implies\sf 10 \times 10 \\\\

\implies\sf 100cm^2\\\\

Number of boxes can be drawn

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\qquad \quad {\red{\tt{\pmb{\dfrac{Area \: of \: a \: drawing\: paper}{Area\: of \: a \: square \: box}}}}}\\\\

\implies\sf \dfrac{ \cancel{216} \: ^{108}}{\cancel{10} \:  \: ^5}\\\\

\implies\sf \dfrac{108}{5} = 21 \dfrac{3}{5} \\\\

Number of boxes can be drawn from drawing paper = 21


BrainlyIAS: Awesome ! ❤️ (✷‿✷)
Answered by ExploringMathematics
83

\bigstar\:\:\textbf{Length of Drawing Paper = 60 cm}

\bigstar\:\:\textbf{Breadth of Drawing Paper = 36 cm}

\bigstar\:\:\textbf{Length of Square Box = 10 cm}

\textrm{Area of Drawing Paper = Area of Square Box $\times$ Number of Square Box}

\longrightarrow\textrm{Length $\times$ Breadth = Area of Square Box $\times$ Number of Square Box}

\longrightarrow\textrm{60 cm $\times$ 36 cm = Side $\times$ Side $\times$ Number of Square Box}

\longrightarrow\textrm{2160 cm$^2$ = 10 cm $\times$ 10 cm $\times$ Number of Square Box}

\longrightarrow\textrm{2160 cm$^2$ = 100 cm$^2$ $\times$ Number of Square Box}

\longrightarrow\textrm{Number of Square Box =  2160 cm$^2$/100 cm$^2$}

\longrightarrow\textrm{Number of Square Box =  2160/100}

Similar questions