Math, asked by Anoushka9463, 10 months ago

A drinking glass is in the shape of a frustum of a cone of height 14cm. The diameters of its two circular ends are 4cm and 2cm. Find the capacity of the glass.

Answers

Answered by BrainlyConqueror0901
51

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Volume\:of\:glass=102.67\:cm^{3}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: {\implies Height \: of \: glass = 14 \: cm} \\  \\  \tt: {\implies Diameter \: of \: glass ( d_{1})=4 \: cm} \\  \\ \tt: {\implies Diameter \: of \: glass ( d_{2})=2\: cm} \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Volume \: of \: glass = ?

• According to given question :

 \tt \circ \:  r_{1}  = 2 \: cm \\  \\  \tt \circ \:  r_{2}  = 1 \: cm  \\  \\ \bold{As \: we \: know \: that} \\  \tt:  \implies Volume \: of \: glass =  \frac{1}{3} \pi h(( r_{1})^{2}  +  {( r_{2} )}^{2}  + ( r_{1} \times  r_{2})) \\  \\ \tt:  \implies Volume \: of \: glass =  \frac{1}{3}  \times   \frac{22}{7}  \times 14 \times ( {2}^{2}  +  {1}^{2}  + (2 \times 1)) \\  \\ \tt:  \implies Volume \: of \: glass =  \frac{1}{3}   \times 44 \times (4 + 1 + 2) \\  \\ \tt:  \implies Volume \: of \: glass =  \frac{1}{3}  \times 44 \times 7 \\  \\  \green{\tt:  \implies Volume \: of \: glass = 102.67  \: {cm}^{3} }

Answered by kailashmeena123rm
27

ANSWER

102.58 cm^2

FORMULA USED

VOLUME OF FRUSTOM = π/3 ×h(R^2+r^2+R×r)

EXPLANATION

Given

diameter = 4cm and 2 cm and height 14 cm

radius = 2 cm and 1 cm

CAPACITY = VOLUME OF FRUSTEM

= π/3 × (14)(4+1+2)

= 102.58 cm^2

hope it helps

follow me

bye

Similar questions