Math, asked by karthikugran420, 11 months ago

A drinking glass open at the top is in the shape of a frustum of a cone of height 24 cm.
The diameters of its top and bottom circular ends are 18 cm and 4 cm respectively.
Find the capacity and total surface area of the glass.​

Answers

Answered by rashasharma9640
7

Answer:

                                                                                                   

Step-by-step explanation:

Volume of a Frustum = 1/3 πh (R²+r²+Rr)

                                =2589.7 cm³

TSA of frustum without top= πl[R+r]+πr²

                                                l=\sqrt{h^{2} +(R-r)^{2} }

                                                  =25cm

Using in equation= 2592.8+254.5

                             =2847.3cm²

All the best for your exam tomorrow :)

Answered by eudora
4

Capacity of the drinking glass is 2589.71 cm³ and total surface area is 876.86 cm²

Step-by-step explanation:

Drinking glass is open at the top and it is in the shape of a frustum of a cone.

Height of the frustum h = 24 cm

Diameter of the top = 18 cm, diameter of the bottom = 4 cm

Therefore, radius of the top R = 9 cm and radius of the bottom r = 2 cm.

Capacity or volume of the glass = \frac{1}{3}\pi h(R^{2}+r^{2}+Rr)

= \frac{1}{3}\pi \times 24(81+4+18)

= 824π

= 2589.71 cm³

Total surface area of the glass open at the top = \pi (R+r)\sqrt{(R-r)^{2}+h^{2}}+\pi r^{2}

= \pi (9+2)\sqrt{(9-2)^{2}+24^{2}}+\pi 2^{2}

= \pi (11)(\sqrt{49+576})+4\pi

= 275\pi +4\pi=279\pi

= 876.86 cm²

Learn more about the frustum from

https://brainly.in/question/13769758

Attachments:
Similar questions