Math, asked by safiyafathima728, 3 months ago

A drinking glass vessel is in the shape of furstom of a cone of height 14cm the diameter of its two circular ends are 4cm and 2cm. find the capacity of the vessel​

Answers

Answered by SachinGupta01
5

 \bf  \underline{Given} :

 \sf \implies Height  \: of  \: frustum = 14  \: cm

 \sf \implies Diameter \:  of \:  bigger \:  circular \:  end = 4 \:  cm

 \sf \implies Diameter \:  of \:  smaller  \:  circular \:  end = 2 \:  cm

 \bf  \underline{To \:  find} :

 \sf \implies Volume \:  or \:  Capacity \:  of  \: glass.

 \bf \: \underline{ Formula \:  to \:  be  \: used},

 \sf \implies \boxed{ \pink{\sf \:  \dfrac{1}{3}  \pi h \:   \bigg((r_1)^{2}  + (r_2)^{2} + (r_1 \times r_1)  \bigg)}}

 \sf \: Where,

 \sf \implies h = 14  \: cm

 \sf \implies r_1 =   \dfrac{Diameter \:  of \:  bigger \: end }{2}  =  \dfrac{4}{2}  = 2 \:cm

 \sf \implies r_2 =   \dfrac{Diameter \:  of \:  smaller  \: end }{2}  =  \dfrac{2}{2}  = 1 \:cm

 \underline{ \sf \: Now, we \:  will  \: find \:  the  \: volume  \: of \:  glass. }

 \sf \implies \sf \:  \dfrac{1}{3}  \pi h \:   \bigg((r_1)^{2}  + (r_2)^{2} + (r_1 \times r_1)  \bigg)

 \sf \:  \underline{Putting \:  the  \: values},

 \sf \implies \sf \:  \dfrac{1}{3}  \:   \times \dfrac{22}{7}  \times 14 \:    \bigg(2^{2}  + 1^{2} + 2 \times 1 \bigg)

 \sf \implies \sf \:  \dfrac{1}{3}  \:   \times \dfrac{22}{7}  \times 14 \:    \bigg(4  + 1 + 2\bigg)

 \sf \implies \sf \:  \dfrac{1}{3}  \:   \times \dfrac{22}{7}  \times  \dfrac{14}{1}  \times \dfrac{7}{1}

 \sf \implies \dfrac{22 \times 14}{3}

 \sf \implies \dfrac{308}{3}

 \red{ \sf \implies 102.66 \: cm^{3} }

 \underline{\boxed{ \pink{ \sf \:Hence, capacity  \: of  \: the  \: glass = 102.66 \: cm^{3}}}}

Attachments:
Similar questions