Math, asked by kevinbino246, 18 days ago

A drone camera is used to shoot an object P from two different positions R and S along the same vertical line QRS. The angle of depression of the object P from these two positions are 35° and 60° respectively as shown in the diagram. If the distance of the object P from point Q is 50 metres, then find the distance between R and S correct to the nearest meter​

Answers

Answered by ansarimuneer94
12

Answer:

hope it's help you mark me as brainliest

Attachments:
Answered by madeducators2
38

Given:

A drone camera is used to shoot an object P from two different positions R and S along the same vertical line QRS. The angle of depression of the object P from these two positions are 45° and 60° respectively .The distance of the object P from point Q is 50 meters ,

To Find:

Distance between R and S

Step-by-step explanation:

  • In ΔPQR  

tan(45)=RQ\div PQ=RQ\div 50\\1=RQ\div 50\\RQ=50

  • In ΔPSQ

tan(60)=SQ\div PQ=(SR+RQ)\div PQ=(SR+50)\div 50\\\sqrt{3}= (SR+50)\div 50\\50\times \sqrt{3} =SR+50\\SR=50\times(\sqrt{3}-1 )\\SR=50\times 0.732=36.6\\

  • So answer to the nearest integer is 37m.

The final answer is 37m

Similar questions