Math, asked by dipsemail9922, 9 months ago

à ῳıཞe ıŋ ɬɧe ʂɧą℘e ơʄ ą ཞeƈɬąŋɠƖe ῳıɬɧ ɬɧe ʂıɖeʂ 14ƈɱ ąŋɖ 8ƈɱ ıʂ ʂɬཞąıɠɧɬeŋeɖ ąŋɖ ɬɧeŋ ცeŋɬ ıŋ ɬɧe ʂɧą℘e ơʄ ą ƈıཞƈƖe ʄıŋɖ ɬɧe ཞąɖıųʂ ąŋɖ ɬɧe ąཞeą ơʄ ą ƈıཞƈƖe ??? Please tell the correct ones

Answers

Answered by suraj5070
53

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt A \:wire\: in\: the\: shape\: of\: a\: rectangle\: with\: the\: sides\\\tt 14\:cm\: and\: 8\:cm \:is\: straightened\: and\: then\: bent\: in\\\tt the\: shape\: of \:a \:circle. \:Find\: the\: radius\: and\\\tt the\: area\: of\: the\: circle.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \bf Length\: of \:the\: rectangle =14\:cm
  •  \bf Breadth\: of \:the\: rectangle =8\:cm

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \bf Radius\: of \:the\: circle
  •  \bf Area\: of \:the\: circle

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\pink {\underline {\bf {\pmb {Radius \:of \:the \:circle(r)}}}}}

 {\leadsto {\orange {\sf {Perimeter\: of \:the\: rectangle(P)}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {P_{(Rectangle)}=2\big(l+b\big)}}}}}}}

  •  \sf P=perimeter\:of the \:rectangle
  •  \sf l=length\:of the \:rectangle
  •  \sf b=breadth\:of the \:rectangle

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies P=2\big(14+8\big)

 \bf \implies P=2\big(22\big)

 \implies {\blue {\boxed {\boxed {\purple {\sf {P=44\:cm}}}}}}

 \\

{\blue {\boxed {\green {\sf {Perimeter\: of\: the\: rectangle = Circumference \:of\: the\: circle}}}}}

 \\

 {\leadsto {\orange {\sf {Radius\: of \:the\: circle(r)}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {C_{(Circle)}=2\pi r}}}}}}}

  •  \sf C=circumference\:of the \:circle
  •  \sf r=radius\:of the \:circle

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies 44=2\times \dfrac{22}{7}\times r

 \bf \implies 44=\dfrac{44}{7}\times r

 \bf \implies 44\times 7=44r

 \bf \implies 308=44r

 \bf \implies r=\dfrac{308}{44}

 \bf \implies r=\dfrac{\cancel{308}}{\cancel{44}}

 \implies {\blue {\boxed {\boxed {\purple {\mathfrak {r=7\:cm}}}}}}

 {\underbrace {\red {\underline {\red {\overline {\red {\pmb {\sf {{\therefore} The\:radius\: of \:the\: circle\: is \:7 \:cm}}}}}}}}}

———————————————————————————————

 {\pink {\underline {\bf {\pmb {Area \:of \:the \:circle(A)}}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {A_{(Circle)}=\pi{r}^{2}}}}}}}}

  •  \sf A=area\:of the \:circle
  •  \sf r=radius\:of the \:circle

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies A=\dfrac{22}{7}\times {\big(7\big)}^{2}

 \bf \implies A=\dfrac{22}{7}\times 7\times 7

 \bf \implies A=\dfrac{22}{\cancel{7}}\times 7\times \cancel{7}

 \bf \implies A=22 \times 7

 \implies{\blue {\boxed {\boxed {\purple {\mathfrak {A=154\:{cm}^{2}}}}}}}

 {\underbrace {\red {\underline {\red {\overline {\red {\pmb {\sf {{\therefore} The\:area\: of \:the\: circle\: is \:154\:{cm}^{2}}}}}}}}}}

____________________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf Area \:of \:the \:circle =\pi{r}^{2}

 \sf Circumference\:of \:the \:circle =2\pi r

 \sf Diameter \:of \:the \:circle =2r

Similar questions