A एक काम को 24 दिन में कर सकता है, B,52 दिन में और
C.64 दिन में। सब मिलकर काम शुरू करते हैं, परंतु A,6
दिन के बाद काम छोड़ देता है और B काम पूरा होने से 6 दिन
पहले छोड़ देता है। काम कितने दिन चला?
a
(b) 20
(c) 18
(d) 30
T-mपरीक्षा 2011
Answers
Answer:
Question:
In the adjacent Quadrilateral ABCD, AC is the diagonal of length 36cm, BE and DF perpendicular from B and D to AC are 8cm and 12cm respectively. Find the area of the quadrilateral.
Answer:
Area of the given Quadrilateral = 860 cm²
Step-by-step explanation:
In the given figure we have two triangles, ∆ADC and ∆ABC.
The ∆ ADC, Base = 36cm and height = 12cm
Now, let's calculate the area of the ∆ ADC
\bf Area \ of \ \triangle ADC = \dfrac{1}{2} BASE \times HEIGHTArea of △ADC=
2
1
BASE×HEIGHT
\sf Area \ of \ \triangle ADC = \dfrac{1}{2} 36 \times 12Area of △ADC=
2
1
36×12
\sf Area \ of \ \triangle ADC = 18 \times 12Area of △ADC=18×12
\sf Area \ of \ \triangle ADC = 216cm^2Area of △ADC=216cm
2
The ∆ ABC, Base = 36cm and Height = 8cm
Now, let's calculate the area of the ∆ ABC
\bf Area \ of \triangle ABC = \dfrac{1}{2} BASE \times HEIGHTArea of△ABC=
2
1
BASE×HEIGHT
\sf Area \ of \ \triangle ABC = \dfrac{1}{2} 36 \times 8Area of △ABC=
2
1
36×8
\sf Area \ of \ \triangle ABC = 36 \times 4Area of △ABC=36×4
\sf Area \ of \ \triangle ABC = 144cm^2Area of △ABC=144cm
2
Area of Quadrilateral = ADC + ABC
Area of Quadrilateral = 216cm² + 144cm² = 360cm²
Because a ने २५ का कह कर सिर्फ़ 18दिन काम किया और 52 दिन वाले ne 6 दिन पहले ही काम छोड दिया to 52 mai 12 - kur de to = 30