a=equal to root 5 +1 up on root 5 minus 1 and b=root5-1 upon root 5+1 then find a2+ab+b2/a2-ab+b2
Answers
Answered by
36
This we can do by rationalization of irrational numbers in the denominator.
![a=\frac{\sqrt5+1}{\sqrt5-1},\ \ b=\frac{\sqrt5-1}{\sqrt5+1}\\\\\frac{a}{b}=\frac{(\sqrt5+1)^2}{(\sqrt5-1)^2}=\frac{5+1+2\sqrt5}{5+1-2\sqrt5}\\\\Rationalizing,\ \ =\frac{(3+\sqrt5)(3+\sqrt5)}{(3-\sqrt5)(3+\sqrt5)}=\frac{9+5+6\sqrt5}{9-5}=\frac{7+3\sqrt5}{2}\\\\\frac{a^2+ab+b^2}{a^2-ab+b^2}=divide\ by\ b^2\ in\ Nr.\ and\ Dr.\\\\=\frac{\frac{a^2}{b^2}+\frac{a}{b}+1}{\frac{a^2}{b^2}-\frac{a}{b}+1}=\frac{(7+3\sqrt5)^2+2(7+3\sqrt5)+4}{(7+3\sqrt5)^2-2(7+3\sqrt5)+4}\\\\=\frac{112+48\sqrt5}{84+36\sqrt5} a=\frac{\sqrt5+1}{\sqrt5-1},\ \ b=\frac{\sqrt5-1}{\sqrt5+1}\\\\\frac{a}{b}=\frac{(\sqrt5+1)^2}{(\sqrt5-1)^2}=\frac{5+1+2\sqrt5}{5+1-2\sqrt5}\\\\Rationalizing,\ \ =\frac{(3+\sqrt5)(3+\sqrt5)}{(3-\sqrt5)(3+\sqrt5)}=\frac{9+5+6\sqrt5}{9-5}=\frac{7+3\sqrt5}{2}\\\\\frac{a^2+ab+b^2}{a^2-ab+b^2}=divide\ by\ b^2\ in\ Nr.\ and\ Dr.\\\\=\frac{\frac{a^2}{b^2}+\frac{a}{b}+1}{\frac{a^2}{b^2}-\frac{a}{b}+1}=\frac{(7+3\sqrt5)^2+2(7+3\sqrt5)+4}{(7+3\sqrt5)^2-2(7+3\sqrt5)+4}\\\\=\frac{112+48\sqrt5}{84+36\sqrt5}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7B%5Csqrt5%2B1%7D%7B%5Csqrt5-1%7D%2C%5C+%5C+b%3D%5Cfrac%7B%5Csqrt5-1%7D%7B%5Csqrt5%2B1%7D%5C%5C%5C%5C%5Cfrac%7Ba%7D%7Bb%7D%3D%5Cfrac%7B%28%5Csqrt5%2B1%29%5E2%7D%7B%28%5Csqrt5-1%29%5E2%7D%3D%5Cfrac%7B5%2B1%2B2%5Csqrt5%7D%7B5%2B1-2%5Csqrt5%7D%5C%5C%5C%5CRationalizing%2C%5C+%5C+%3D%5Cfrac%7B%283%2B%5Csqrt5%29%283%2B%5Csqrt5%29%7D%7B%283-%5Csqrt5%29%283%2B%5Csqrt5%29%7D%3D%5Cfrac%7B9%2B5%2B6%5Csqrt5%7D%7B9-5%7D%3D%5Cfrac%7B7%2B3%5Csqrt5%7D%7B2%7D%5C%5C%5C%5C%5Cfrac%7Ba%5E2%2Bab%2Bb%5E2%7D%7Ba%5E2-ab%2Bb%5E2%7D%3Ddivide%5C+by%5C+b%5E2%5C+in%5C+Nr.%5C+and%5C+Dr.%5C%5C%5C%5C%3D%5Cfrac%7B%5Cfrac%7Ba%5E2%7D%7Bb%5E2%7D%2B%5Cfrac%7Ba%7D%7Bb%7D%2B1%7D%7B%5Cfrac%7Ba%5E2%7D%7Bb%5E2%7D-%5Cfrac%7Ba%7D%7Bb%7D%2B1%7D%3D%5Cfrac%7B%287%2B3%5Csqrt5%29%5E2%2B2%287%2B3%5Csqrt5%29%2B4%7D%7B%287%2B3%5Csqrt5%29%5E2-2%287%2B3%5Csqrt5%29%2B4%7D%5C%5C%5C%5C%3D%5Cfrac%7B112%2B48%5Csqrt5%7D%7B84%2B36%5Csqrt5%7D)
if you check the numerator and denominator, you see that it is 4/3.
answer is 4/3.
if you check the numerator and denominator, you see that it is 4/3.
answer is 4/3.
kvnmurty:
clik on thanks. select best ans.
Similar questions