Physics, asked by Anonymous, 4 months ago

a fan is rotating at 90 rpm.It is then switched off. It stops after 21 revolutions. calculate the time taken by the frictional torque is constant ​

Answers

Answered by Anonymous
8

ɪɴ ᴛʜɪs ᴄᴀsᴇ, ᴛʜᴇ ɪɴɪᴛɪᴀʟ ᴀɴɢᴜʟᴀʀ ᴠᴇʟᴏᴄɪᴛʏ ᴏғ ᴛʜᴇ ғᴀɴ ɪs ω =0

</p><p>ω = 100 \:  \:  \:  \: rev seconds</p><p>

Aɴᴅ ᴛʜᴇ ғɪɴᴀʟ ᴀɴɢᴜʟᴀʀ ᴠᴇʟᴏᴄɪᴛʏ ᴏғ ᴛʜᴇ ғᴀɴ ɪs ω=100ʀᴇᴠ/sᴇᴄ.

ᴛʜᴇ ᴛᴏᴛᴀʟ ɴᴜᴍʙᴇʀ ᴏғ ʀᴇᴠᴏʟᴜᴛɪᴏɴs ʙᴇғᴏʀᴇ ᴛʜᴇ ғᴀɴ ᴄᴏᴍɪɴɢ ᴛᴏ sᴛᴏᴘ ɪs ᴄᴀʟᴄᴜʟᴀᴛᴇᴅ ᴀs ғᴏʟʟᴏᴡs.

0 =  (\frac{ \:  \:  </p><p>ω+ω </p><p>  \: }{2} )t \\  = ( \frac{100 + 0}{2} )  \times (5  \times  60) \\  = 15000

Answered by Anonymous
33

\sf{\underline{\underline{\qquad  \bigstar \: Given  \:  \bigstar\qquad }}} \\

  • Initial frequency = 90 rev/min
  • Final frequency = 0 rev/sec
  • Number of revolutions = 21

\sf{\underline{\underline{\qquad  \bigstar \: To \:  Find \:  \bigstar\qquad }}} \\

  • The time taken by the frictional torque is constant = ?

\sf{\underline{\underline{\qquad  \bigstar \: Solution \:  \bigstar\qquad }}} \\

\tiny \bigstar \: \underline{\frak{First \:  of \:  all \:  we  \: have \:  to \:  convert \:  initial \:  frequency \:  from \:  rev/min  \: to \:  rev/sec :}} \\  \\

:\implies \sf Initial \:  frequency = \dfrac{90 \: rev}{1 \:  min} \\  \\  \\

:\implies \sf Initial \:  frequency = \dfrac{90 \: rev}{60 \: sec} \\  \\  \\

:\implies \sf Initial \:  frequency = \dfrac{9 \: rev}{6 \: sec} \\  \\  \\

:\implies \underline{ \boxed{ \sf Initial \:  frequency =1.5 \: rev/sec }}\\  \\  \\

\therefore\:\underline{\textsf{Initial frequency of rotating fan is \textbf{1.5 rev/sec}}}. \\  \\  \\

\tiny \bigstar \: \underline{\frak{Now, Let's \:  calculate  \: the \:  time \:  taken \:  by  \: the \:  frictional \:  torque :}} \\  \\

\dashrightarrow\:\:\sf Number  \: of  \: revolutions =\Bigg\lgroup\dfrac{ Initial \:  frequency - Final  \: frequency}{2} \Bigg\rgroup\times Time \\  \\  \\

\dashrightarrow\:\:\sf 21 =\Bigg\lgroup\dfrac{1.5- 0}{2} \Bigg\rgroup\times Time \\  \\  \\

\dashrightarrow\:\:\sf 21 =\Bigg\lgroup\dfrac{1.5}{2} \Bigg\rgroup\times Time \\  \\  \\

\dashrightarrow\:\:\sf 21 \times 2 =1.5\times Time \\  \\  \\

\dashrightarrow\:\:\sf 42=1.5\times Time \\  \\  \\

\dashrightarrow\:\:\sf Time  =  \dfrac{42}{1.5}  \\  \\  \\

\dashrightarrow\:\: \underline{ \boxed{\sf Time  =  28  \:   seconds}}\\  \\  \\

\therefore\:\underline{\textsf{The time taken by the frictional torque is \textbf{28 seconds}}}.  \\


Cosmique: Splendid! :3
Similar questions