Math, asked by a9rchujhana, 1 year ago

a farmer connects a pipe of internal diameter 20 cm from a canal into a cylindrical tank in his field , which is 10m in diameter and 2 m deep. If water flows through the pipe at the rate of 3km/hr , in how much time the tank be filled ?

Answers

Answered by Golda
39
Solution:-

Speed of water = 3 km/hr
= 3000/60
= 50 meter
And, 
Internal radius of pipe = 20/2 = 10 cm or 0.1 m
So,
Area of the cross section = πr² 
= π(1/10)²
= 0.01π m²
Volume of the water that flows in 1 minute
= 0.01π × 50
= 0.5π m³
Let the time taken to fill the tank = t minutes 
So, Volume of the water that flows in t minutes = 0.5πt m³
And,
Radius of the base of the tank = 10/2 = 5 m
Height = 2 m
Volume of the cylindrical tank = πr²h
= π*5*5*2
= 50π m³
So,
Volume of the water that flows in t minutes = Volume of the tank
⇒ 0.5πt = 50π 
⇒ t = 50/0.5
t = 100 minutes 
So, the tank will be filled in 100 minutes.
Answer.

Answered by Anonymous
40

Question :-

A farmer connects a pipe of internal diameter 20 cm from a canal into a cylindrical tank in his feild, which is 10 m in diameter and 2 m deep. If water flows through the pipe at the rate of 3 km/h, in how much time will the tank be filled.

   \huge\boxed{ \underline{ \bf{ \bigstar \: Solution}}}

Given, speed of flow of water = 3 km/h = 3 × 1000 m / h

 \longrightarrow  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  [ \because \bf \: 1km \:  =  \: 1000 \: m]

 \therefore  \:  \:  \:  \rm \: Length \: of \: water \: flow \: in \: 1 \: h \:  = 3000 \: m

 \rm \: Now, \: area \: of \: the \: pipe \: which \: is \: in \: the  \\ \rm form \: of \: a \: circle

 =  \: (10) {}^{2} \pi \bigg[ \because \rm \: area \: of \: circle \:  = \pi \: r {}^{2}  \: and \: r =  \frac{20}{2} \: cm = 10 \: cm \bigg] \\

 \rm \:  =  \: 100\pi \: cm {}^{2}  =  \frac{\pi}{100} \: m {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \bigg[ \because \: 1 \: cm =  \frac{1}{100} \: m \bigg] \\

 \rm \: For \: cylindrical \: tank,

 \rm \: Diameter \:  = 10 \: cm

 \therefore \:  \:  \:  \rm \: Radius \:  =  \frac{10}{2} \: m \: and \: height \:  = 2 \: m, \: then \\

 \rm \: Volume \: of \: cylindrical \: tank \:  = \pi \times  \bigg( \frac{10}{2} \bigg){}^{2}  \times 2 \:  [ \because \: v = \pi \: r {}^{2} h] \\

 \:  \:  \:  \:   \: \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm =  \: 50\pi \: m {}^{3}

 \therefore \:  \:  \:  \rm \: Required \: time

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm =  \:  \frac{volume \: of \: cylindrical \: tank}{area \: of \: the \: pipe  \times  \: length \: of \: water \: flow \: in \: 1 \: h} \\

 \:  \:  \:  \:  \:   \:  \:  \rm =  \:  \:  \frac{50\pi}{ \frac{\pi}{100} \times 3000} \: h \\

 \:  \:  \:  \:  \:  \:  \:  \rm =  \:  \frac{50 \times 60 \times 100}{3000} \: min \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm =  \: 100 \: min

 \rm \: Hence, \: in \: 100 \: min, \: the \: tank \: will \: be \: filled.

Similar questions