Math, asked by dhana232323, 1 year ago

a fast train takes 3 hours less than a slow train for a journey of 600km. if the speed of the slow train is 10kmph less than that of fast train. find the speed of two trains.

Answers

Answered by subrataana9349
7

Answer:

Step-by-step explanation:

Let the speed of the fast train be x km/hr

Let the speed of the slow train be (x- 10) km/hr

Hence the time taken by the fast train is 600/x

Time taken by slow train is 600/(x-10)

Therefore (600/x-10) - (600/x) = 3

On reducing we get,

3x^2 -30x-6000 = 0 or x^2 -10x -2000 = 0

On factorising we get x = 50 or -40

The negative value is not acceptable.

Hence x = 50

That is the speed of the fast train is 50km/hr and the speed of the slow train is 40km/hr


dhana232323: thanks
Answered by azzhanparwez123
6

Answer:

Step-by-step explanation:Total distance=600 km

speed of slow train=x km/h

speed of fast train=(x+10) km/h

t1(slow) =d/s=600/x hrs

t2(fast)=d/s=600/x+10 hrs

A.T.P

=600/x-600/x+10=3

=600(x=10-x/x(x+10))=3

=2000=x2+10x

=x2+10x-2000=0

=x2+50x-40x-2000=0

=x(x+50)-40(x+50)=0

=(x+50)(x-40)=0

EITHER:                                                     OR:

x+50=0                                                       x-40=0

=x=-50                                                         x=40

                             (hence, speed cannot be in negetive)

so,speed of slow train=40 km/h

    speed of fast train=(x+10)km/h

                                        (40+10)km/h

                                         50 km/h

                                         


dhana232323: thanks
Similar questions