Math, asked by ajantaasingh, 1 year ago

A field in the form of a parallelogram has a base 32 m and altitude 1.75 m . Find the cost of watering the field at ₹ 8 per sq.m

Answers

Answered by Anonymous
18

❏ Using Formula:-

• for a cuboid of dimensions( l×b×h )

1) the diagonal is given by,

  \longrightarrow  \sf  \boxed{diagonal= \sqrt{l {}^{2} + b {}^{2} +  h {}^{2}    } }

2)volume of the Cuboid

\longrightarrow \sf\boxed{ \: volume =( l \times b \times h)}

•for a right circular cylinder of base radius r and of height h ,

1)Curved Surface Area(L.S.A),

\longrightarrow \sf\boxed{  L.S.A.=( 2\pi r h)}

2)Total Surface Area(T.S.A.),

\longrightarrow \sf\boxed{  T.S.A.=2\pi r (r+h)}

3) Volume of,

\longrightarrow \sf\boxed{ Volume=\pi r{}^{3}h}

━━━━━━━━━━━━━━━━━━━━━━━

\huge\pink{\star}

•for a parallelogram of base b and altitude h,

3) Area of,

\longrightarrow \sf\boxed{ Area=b\times h}

━━━━━━━━━━━━━━━━━━━━━━━

❏ Question:-

Q) A field in the form of a parallelogram has a base 32 m and altitude 1.75 m . Find the cost of watering the field at ₹ 8 per sq.m.

❏ Solution:-

Given:- base(b)=32 m

height (h)=1.75 m

\sf\therefore Area=b\times h

\sf\implies Area=(32\times 1.75)\:\:m{}^{2}

\sf\implies \boxed{\red{Area=56\:\:m{}^{2}}}

Total cost of watering the field at 8 Rs/ is,

\sf\implies Cost=(56\times8)\:\:Rs

\sf\implies \boxed{\red{\large{Cost=448\:\:Rs} }}

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

#answerwithquality & #BAL

Similar questions