Math, asked by chinu2617, 11 months ago

a field in the shape of a trapezium whose parallel sides are 25cm and 10cm. The non parallel sides are 14m and 13m. Find the area of the field ​

Answers

Answered by alwaysonbrainly
1

Answer:

hope you can find ur answer......

take help from it....

Step-by-step explanation:

2(25-10)=15(2)=*

2*=15

*=15/2

*=7.5

case -2

1/2*7.5*(25+10)

1/2*7.5*35

Attachments:
Answered by Anonymous
1

\Large{\underline{\underline{\mathfrak{\red{Given:-}}}}}

\rm{A\: field\: in\:the \:shape\: of\:a\:trapezium whose\: parallel \:sides\: are \:25cm \:and\: 10cm.\:The \:non \:parallel \:sides \:are \:14m\: and\: 13m. }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\Large{\underline{\underline{\mathfrak{\blue{To \: Find:-}}}}}

\rm{Area\: of \: the\: field.}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\Large{\underline{\underline{\mathfrak{\pink{Formula\: used:-}}}}}

  • \rm{Heron's \: Formula= \sqrt{s(s - a)(s - b)(s - c)} }
  • \rm{Area \: of \: parallelogram=Base×Height}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\Large{\underline{\underline{\mathfrak{\purple{Solution:-}}}}}

\rm{From \: C,\: draw \: CE \: ||\: DA.}

\rm{Clearly, \: ASCE \: is \: a \: parallelogram\: having\: AD||CE\:  and \: DC||AE\: such \: that \: AS =13 \: m \: and DC \: 10m}

\rm{AE=DC=10m \: and \: CE=AD=13m}

\rm{BE=AB-AE=\: (25-10)m=15m}

\rm{Thus,\: in \: BCE, \: we \: have}

\rm{BC=14m, \: CF = 13 m \: and \: BE =15 m}

\rm{Let\: s \: be \: the\: semi\: perimeter\:of \: triangle\: BCE,\: Then,}

\rm{2s=BC+CE+BE=14+13+15=42}

\rm{→s=21}

\rm{Area\: of \: traingle\:BCE =  \sqrt{21 \times (21 - 14) \times (21 - 13) \times (21 - 15)} }

\rm{→Area\: of \: traingle\: BCE= \sqrt{21 \times 7 \times 8 \times 6}  }

\rm{→Area\: of \: traingle\:BCE= \sqrt{ {7}^{2} \times  {3}^{2} \times  {4}^{2}   }=84 {m}^{2}   }

\rm{Also,\:Area\: of \: traingle\: BCE = \frac{1}{2} (BE×CL)}

\rm{→84=\frac{1}{2}×15×CL}

\rm{→CL=\frac{168}{15}=\frac{56}{5}}

\rm{→Height\: of \: parallelogram\: ADCE=CL=\:\frac{56}{5}m}

\rm{∴Area\: of \: parallelogram \: ADCE = Base×Height\:=AE×CL=10×\frac{56}{5}=112{m}^{2}}

\rm{Hence,\: Area\: of \: trapezium\: ABCD= \: Area \: of \: parallelogram\: ADCE\: + \: Area \: of \: traingle\:BCE=(112+84){m}^{2}=196{m}^{2}}

{\rm{\underline{\boxed{\boxed{\mathfrak{\purple{Area\: of \: trapezium\: ABCD=196{m}^{2}}}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\Large{\underline{\underline{\mathfrak{\green{Thanks}}}}}

Attachments:
Similar questions