Math, asked by vaghelaharesh061, 1 year ago

A field is in shape of a trapezium whose parallel sides are 25m and 10m
The non-parallel sides are 14m and 13m. Find area of the field.

Answers

Answered by arc555
5
Hence, approx. area of the trapezium is 192.5m^2.
Attachments:
Answered by jevelin
3

Answer:

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CD

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogram

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13m

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10m

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15m

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBEC

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formula

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²=84m²

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²=84m²Area of Δ BEC =½x CE x BF

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²=84m²Area of Δ BEC =½x CE x BF=84=12x15xBF

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²=84m²Area of Δ BEC =½x CE x BF=84=12x15xBFBF=16815=11.2m

Answer:Draw a line BE parallel to AD and draw a perpendicular BF on CDit can be observe that ABED is a parallelogramBE=AD=13mED=AB=10mEC=25-ED=15mfor ΔBECsemi perimeter S=13+14+15/2m42/2=21By heron formulaArea of Δ √s(s-a) (s-b) (s-c)Area of ΔABEC= √21 (21-13)(21-14)(21-15)m²[√21(8)(7)(6)]m²=84m²Area of Δ BEC =½x CE x BF=84=12x15xBFBF=16815=11.2mArea of the field = 84+112=196m2

Step-by-step explanation:

by \: eric \: taeyong

Attachments:
Similar questions