Math, asked by gauravwankhede121019, 17 days ago

A field is in the form of triangle. If it's area is 3.5 ha and the length of its base is 350 m, then find its altitude​

Answers

Answered by fahims8080
30

Answer:

Altitude = 200 m

Step-by-step explanation:

According to the information provided in the question it is given as

Field is in the form of triangle

Area =3.5 ha =Hacter

Base length = 350 m

We need to find its altitude

Here   Area = 3.5 ha = 35000 m

Area of triangle = \frac{1}{2} \times base \times height\\

By substituting the values we get the answer

35000 = \frac{1}{2} \times 350\times h\\

35000\times 2= 350h\\70000=350h\\h=\frac{70000}{350} \\

No converting into lowest term we get

h= 200 m

Hence altitude = 200 m

Answered by Anonymous
110

Given : The Area of the field is 3.5 he .Base of the Triangle is 350 m .

 \\ \\

To Find : Find the Altitude of field

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN : For Solving first let us covert the give. Values .After that , by using the formula for Area of Triangle we can calculate the Altitude . Let's Solve :

 \\ \\

 \maltese Converting the Values :

  • 3.5 he = 35000 m
  • Base = 350 m

 \\ \\

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Triangle)}} = \dfrac{1}{2} \times Base \times Height }}}}}

 \\ \\

 \maltese Calculating the Altitude :

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Area = \dfrac{1}{2} \times Base \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 35000 = \dfrac{1}{2} \times 350 \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 35000 = \dfrac{350}{2} \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 35000 \times 2 = 350 \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 70000 = 350 \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{70000}{350} = Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \cancel\dfrac{70000}{350} = Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\pmb{\sf{ Height = 200 \; m }}}}} \; {\red{\bigstar}} \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Altitude of the field is 200 m .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions