Math, asked by naeemchaudhary035, 1 month ago

A field is in the shape of a trapezium of parallel sides 11 m and 25 m and of non-
parallel sides 15 m and 13 m. Find the cost of watering the field at the rate of 5 paise
per 500 cm?
.
.
.
. solve the question step by step​

Answers

Answered by itzsecretagent
126

\LARGE{\color{teal}{\textsf{\textbf{ Qυєѕтiση }}}}

A field is in the shape of a trapezium of parallel sides 11 m and 25 m and of non- parallel sides 15 m and 13 m. Find the cost of watering the field at the rate of 5 paise per 500 cm?

\LARGE{\color{teal}{\textsf{\textbf{ αnѕwєr }}}}

Area of trapezium

 \sf =  \frac{1}{2}  \times Sum  \: of \:  parallel  \: sides  \times  Height \\  \\  \sf =  \frac{1}{2}  \times (AB+ DC)  \times  BF

  • To calculate BF, we do the following steps

Step 1:

  • Draw BE || AD
  • Note AB || DE (AS AB || DC)

Since, opposite sides are parallel,

ABED is a parallelogram.

In parallelogram,

opposite sides are equal

  • BE = AD = 13 m
  • ED = AB = 10 m

Also, EC = DC - ED

= 25-10

= 15 m

Finding Area BEC by Herons formula.

 \sf \boxed{ \sf \pink{ Area  \: of \:  triangle =   \sqrt{s(s-a)(s - b) (s - c)} }}

Here, s is the semi-perimeter, and a, b, c are the sides of the triangle.

ㅤㅤ

Here, a 14 m, b= 15m, c= 13 m

 \sf \: S= \frac{a+b+c}{2}  \\  \\  \sf =  \frac{14+15+13}{2} \\  \\  \sf =  \frac{42}{2}  \\  \\  \sf = 21  \: m

ㅤㅤ

\sf \boxed{ \sf \pink{ Area  \: of \:  triangle =   \sqrt{s(s-a)(s - b) (s - c)} }}

Putting a = 14 m, b= 15m, c = 13 m & s= 21 m

 \sf \: = \sqrt{21(21−14)(21−13)(21−15)}  \\  \\  \sf  =  \sqrt{21(7)(8)(6)}  \\  \\  \sf = \sqrt{7056}  \\  \\  \sf=84 \:  {m}^{2}

Since ABEC has height BF and base EC, we use base height formula to find area

ㅤㅤ

 \sf \: Area  \: of \: \triangle \: BEC =  \frac{1}{2}  \times Base  \times  Height \\  \\  \sf \: Area \:  of  \: \triangle \: BEC  =  \frac{1}{2}  \times  CE  \times  BF \\  \\  \sf \: 84  \: m² = \frac{1}{2} \times   15  \: m  \times  BF \\  \\  \sf \: BF = 84  \times  \frac{2}{15} m \\  \\  \sf \: BF =  11.2 \:  m

ㅤㅤㅤ

 \sf \: Area \:  of  \: trapezium =  \frac{1}{2}  \times Sum \:  of \:  parallel  \: sides  \times Height \\  \\  \sf \: =  \frac{1}{2}  \times (AB+ DC)  \times BF \\  \\  \sf \: = \frac{1}{2}  \times (10 + 25) × 11.2 \\  \\  \sf  = \frac{1}{2}  \times  (35)  \times  11.2 \\  \\  \sf= \boxed{  \red{ \sf196  \: m²}}

 \sf \therefore \: Area \:  of \:  trapezium \:  is  \: \bold{ 196 \:   {m}^{2} }

\rule{300px}{.7ex}

Answered by pureheart
117

\underline{\underline{\maltese\: \: \textbf{\textsf{ Question }}}}

A field is in the shape of a trapezium of parallel sides 11 m and 25 m and of non- parallel sides 15 m and 13 m. Find the cost of watering the field at the rate of 5 paise per 500 cm?

\underline{\underline{\maltese\: \: \textbf{\textsf{Answer}}}}

Sides of the trapenzium are in cm.

 \bf \: 11  \: m  = 1100 \:  cm \\  \\  \bf25 \:  m  = 2500  \: cm  \\  \\  \bf15 \: m= 1500 \:  cm \\  \\  \bf \: 13  \: m =  1300 \:  cm

 \bf So,  \pink{the  \: perimeter  \: of \:  trapezium  = sum \: of \: all \: sides} \\  \\  \bf \: = 1100 + 2500  + 1500 + 1300 \\  \\  \bf= 6400 \:  cm

ㅤㅤㅤ

 \bf \: it  \: costs \:  5  \: paise  \: per \:  500  \: cm.  \\  \\  \bf \: so, per  \: 1 \:  cm \:  it \:  will  \: be =  \frac{5}{500} \:  paise \\  \\  \bf \: for \:6400 \: cm \: it \: will \: cost =  \frac{5}{500}  \times 6400 \\  \\  \bf =  ₹ \:  64

ㅤㅤㅤㅤ

\rule{300px}{.9ex}

Similar questions