Math, asked by mahin881, 1 year ago

A field is in the shape of a trapezium whose parallel
sides are 25 m and 10 m. The non-parallel sides
are 14 m and 13 m. Find the area of the field.​

Answers

Answered by Anonymous
18

AnswEr:

From C, draw CE || DA. Clearly, ADCE is a llgm having AD || CE and DC || AE such that AD = 13 m and DC = 10 m.

\therefore \tt{AE=DC=10m\:and\:CE=AD=13m}

\Rightarrow \tt{BE=AB-AE=(25-10)m=15m}

__________________________

Thus in BCE, we have

\tt{BC=14m,\:CE=13m\:and\:BE=15m}

Let s be the semi-perimeter of BCE. Then,

\tt{2s=BC+CE+BE=14+13+15=42}

\tt\underline{s=21}

_____________________________

 \therefore \tt \: Area \: of  \: \triangle \: BCE  \\  =   \tt\sqrt{21 \times (21 - 14) \times (21 - 13) \times (21 - 15)}  \\  \\  \implies \tt \: Area \: of \:  \triangle \: BCE =  \sqrt{21 \times 7 \times 8 \times 6}  \\  \\ \implies \tt \: Area \: of \:  \triangle  \: BCE =  \sqrt{ {7}^{2} \times  {3}^{2}  \times  {4}^{2}  }  \\  \\  =  \sf \: 84 {m}^{2}

____________________________________

\star Area of ∆BCE = \tt\dfrac{1}{2}(BE\times\:CL)

\Rightarrow \tt{84=} \tt\dfrac{1}{2}\times\:15\times\:CL

\Rightarrow \tt{CL=}\tt\dfrac{168}{15}=\tt\dfrac{56}{5}

\Rightarrow Height of parallelogram ADCE = \tt{CL=}\tt\dfrac{56}{5}m

____________________________

\therefore\tt{Area\:of\:IIgm\:ADCE=Area\:of\:IIgm\:ADCE+Area\:of\:\triangle\:BCE}

\tt{(112+84)m^2=196\:m^2}

#BAL

#Answerwithquality

Attachments:
Similar questions