Math, asked by rajadas5666, 4 months ago

A field is in the shape of a trapezium whose parallel sides are 25m and 10m . the non-parallel sides are 14m and 13m find the are of field ​

Answers

Answered by Candycrush123
1

Answer:

Hope this would help you

please mark brainliest

Attachments:
Answered by aryan073
2

Given :

• The parallel sides of trapezium are 25m and 10m

• The non-parallel sides are 14m and 13m

To find :

• Area of field=?

Solution :

Let ABCD be a trapezium with

AB|| CD

•AB=25m

•CD=10m

• BC=14m

•AD=13m

Draw CE || DA .So ADCE is a parallelogram with,

•CD=AE=10m

•CE=AD=13m

•BE=AB-AE=25-10m=15m

\bf{ In \triangle \: BCE \: , semi \: perimeter \: will  \: be, }

  \\ \implies \sf \: s =  \frac{a + b + c}{2}  \\  \\  \implies \sf \: s =  \frac{14 + 13 + 15}{2}  \\  \\  \implies \sf \: s =  \frac{27 + 15}{2}  \\  \\  \implies \boxed{ \sf{s = 21m}}

\bf{Area \: of \: \triangle BCE}

 \\  \implies \sf  \: area =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \implies \sf \:  \sqrt{21(21 - 14)(21 - 13)(21 - 15)}  \\  \\  \implies \sf \:  \sqrt{21(7)(8)(6)}  \\  \\  \implies \sf \:  \sqrt{7056}  \\  \\  \implies \boxed{ \sf \: 84 {m}^{2} }

\bf{ Also,  \: area \: of \: \triangle BCE \: is }

  \\ \implies \sf \: area \:  =  \frac{1}{2}  \times base \times height

\\ \implies\sf{84 =\dfrac{1}{2} \times 15 \times CL}

\\ \\ \implies\sf{ \dfrac{84 \times 2}{15} = CL}

\\ \\ \implies\boxed{\sf{ CL=\dfrac{56}{5}m}}

\bf{Now , \: Area \: of \: trapezium \: is }

   \\ \implies \sf Area \:  =  \frac{1}{2} (sum \: of \: parallel \: side) \times (height) \\  \\  \implies \sf \: Area \: of \: trapezium =  \frac{1}{2}  \times (25 + 10) \times  \frac{56}{5}  \\  \\  \implies \boxed{ \sf{ Area \:  = 196 {m}^{2} }}

➡ Therefore the Area of trapezium is 196m²

Similar questions