A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m , The non-parallel sides are 14 m and 13 m . Find the area of the field.
Answers
here's your answer 84 m^2
Hello mate =_=
____________________________
Question:-
A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The non-parallel sides are 14 m and 13 m. Find the area of the field.
____________________________
Solution:
Given: ABCD is a trapezium. Non-parallel sides are 14 m and 13 m. Parallel sides are 25 m and 10 m.
Construction: From point C draw CE∥DA completing parallelogram AECD. Also, draw CF⊥BE.
Now, we have AE=CD=10 m andAD=CE=14 m because AECD is a parallelogram.
So, BE=AB-AE=25-10=15 m
Semi-perimeter of ∆BEC
= s
=(BE+CE+BC)/2
=(15+14+13)/2=42/2=21 m
Using Heron's formula,
Area of ∆BEC=
√{s(s−BE)(s−CE)(s−BC)}
=√{21(21−15)(21−14)(21−13)}
=√{21×6×7×8}
=84 m2 ........(1)
Area of ∆BEC=1/2× BE ×CF=84 m2
⇒CF=2×84/15=11.2 m
Area of parallelogram AECD
=AE×CF=10×11.2=112 m2 ...... (2)
Adding (1) and (2), we get
Area of trapezium ABCD=Area of ∆BEC+Area of parallelogram AECD =84+112=196 m2
hope, this will help you.
Thank you______❤
_____________________________❤