Math, asked by aradhya3890, 6 months ago


a Find, from first principles, the derivatives of (3x+5)/x^(1/2)

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

y =  \frac{3x + 5}{ \sqrt{x} }  \\

 =  >  \frac{dy}{dx}  =   \lim_{h\rarr0 } \frac{f(x + h) - f(x)}{h}  \\

 =  >  \frac{dy}{dx}  = \lim_{h\rarr0 } \frac{ \frac{3(x + h) + 5}{ \sqrt{x + h} } -  \frac{3x + 5}{\sqrt{x} }  }{h}  \\

 =  >  \frac{dy}{dx}  = \lim_{h\rarr0 } \frac{(3x + 3h + 5) \sqrt{x}  - (3x + 5) \sqrt{x + h} }{h \sqrt{x(x  + h)}  }  \\

  =  > \frac{dy}{dx}  = \lim_{h\rarr0 } \frac{(3x + 5)( \sqrt{x}   -  \sqrt{x + h} ) + 3h \sqrt{x} }{h \sqrt{x(x + h)} }  \\

 =  >  \frac{dy}{dx}  = \lim_{h\rarr0 } \frac{(3x + 5)( - h)}{h \sqrt{x(x + h)} ( \sqrt{x} +  \sqrt{x + h}  )}  +  \frac{3 \sqrt{x} }{x}  \\

 =  >  \frac{dy}{dx}  =  - \lim_{h\rarr0 } \frac{(3x +5)}{ \sqrt{x(x + h)} ( \sqrt{x}  +  \sqrt{x + h} )}  +  \frac{3}{ \sqrt{x} }  \\

 =  >  \frac{dy}{dx}  =  - \frac{(3x +5)}{2 x\sqrt{x}  }  +  \frac{3}{ \sqrt{x} }  \\

Similar questions