Math, asked by devanandav03, 19 days ago

a)find p(1) if p(x) =x²+2x+5
b)if x-1 is a factor x²+2x+k.what is the value of K
c) express the polynomial 2x²+x-3
d)(x-2)is a factor of x³-2x²+Kx+10.find the value of K

★Answer this question plz​

Answers

Answered by divyanshshaemma
0

Step-by-step explanation:

1. Given: P(x)=x

2

−2x+5

Forx=−1, P(−1)=(−1)

2

−2(−1)+5=1+2+5=8

For x=5, P(5)=(5)

2

−2(5)+5=25−10+5=20

Hence P(−1)=8 and P(5)=20

2.Therefore the value of k is 1.

3. TO DETERMINE

The polynomial 2x² + x + 3 in terms of Legendre polynomials

EVALUATION

We know that in case of Legendre polynomials :

\displaystyle \sf{P_0(x) = 1}P

0

(x)=1

\displaystyle \sf{P_1(x) = x}P

1

(x)=x

\displaystyle \sf{P_2(x) = \frac{1}{2} (3 {x}^{2} - 1) }P

2

(x)=

2

1

(3x

2

−1)

From above we get

\displaystyle \sf{ {x}^{2} = \frac{2}{3} P_2(x) + \frac{1}{3} }x

2

=

3

2

P

2

(x)+

3

1

Now the given polynomial

\displaystyle \sf{ = 2 {x}^{2} + x + 3 }=2x

2

+x+3

\displaystyle \sf{ = 2 \bigg( \frac{2}{3} P_2(x) + \frac{1}{3} \bigg) +P_1(x) + 3 }=2(

3

2

P

2

(x)+

3

1

)+P

1

(x)+3

\displaystyle \sf{ = \frac{4}{3} P_2(x) + \frac{2}{3} +P_1(x) + 3 }=

3

4

P

2

(x)+

3

2

+P

1

(x)+3

\displaystyle \sf{ = \frac{4}{3} P_2(x) + P_1(x) + 3 + \frac{2}{3} }=

3

4

P

2

(x)+P

1

(x)+3+

3

2

\displaystyle \sf{ = \frac{4}{3} P_2(x) + P_1(x) + \frac{9 + 2}{3} }=

3

4

P

2

(x)+P

1

(x)+

3

9+2

\displaystyle \sf{ = \frac{4}{3} P_2(x) + P_1(x) + \frac{11}{3} }=

3

4

P

2

(x)+P

1

(x)+

3

11

\displaystyle \sf{ = \frac{4}{3} P_2(x) + P_1(x) + \frac{11}{3} P_0(x) }=

3

4

P

2

(x)+P

1

(x)+

3

11

P

0

(x)

Which is the required expression in terms of Legendre polynomials

Similar questions