Math, asked by harshvardhanpatil304, 3 months ago

a) Find the derivative of x ^ 2 using the first principle of derivative.​

Answers

Answered by venimeka
0

Answer:

x²=√X

HOPE ITS HELPFULL

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:Let \: f(x) \:  =  \:  {x}^{2}

\rm :\longmapsto\: \therefore \: f(x + h) =  {(x + h)}^{2}

Now,

Using definition of first principle of differentiation,

\rm :\longmapsto\:f'(x) = \displaystyle\tt \:\lim_{h\to0} \: \dfrac{f(x + h) - f(x)}{h}

\rm :\longmapsto\:f'(x) = \displaystyle\tt \:\lim_{h\to0} \: \dfrac{ {(x + h)}^{2}  -  {x}^{2} }{h}

If we substitute directly h = 0, we get indeterminant form.

\rm :\longmapsto\:f'(x) = \displaystyle\tt \:\lim_{h\to0} \: \dfrac{ \cancel {x}^{2} +  {h}^{2}  + 2xh  -   \cancel{x}^{2} }{h}

\rm :\longmapsto\:f'(x) = \displaystyle\tt \:\lim_{h\to0} \: \dfrac{{h}^{2}  + 2xh}{h}

\rm :\longmapsto\:f'(x) = \displaystyle\tt \:\lim_{h\to0} \: \dfrac{ \cancel{h}({h}  + 2x)}{ \cancel{h}}

\rm :\longmapsto\:f'(x) = \displaystyle\tt \:\lim_{h\to0} \: (h + 2x)

\rm :\longmapsto\:f'(x) =  2x

Additional Information :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{tan \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {e}^{x} - 1 }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ log(1 + x) }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

Similar questions