Math, asked by zikrashaikh7977, 9 months ago

A find the Orthogonal trajectory of the family of
Curves e^-x cosy + xy=alpha
where alpha is a real constant
in the xy plane​

Answers

Answered by saounksh
2

ᴀɴsᴡᴇʀ

  •  2{e}^{-x}sin(y) +(x^2- y^2) =\beta

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

ɢɪᴠᴇɴ

  • Curves  e^{-x}cos(y) + xy=\alpha.

ᴛᴏ ғɪɴᴅ

  • Orthogonal curves to the given curves.

ᴄᴀʟᴄᴜʟʟᴀᴛɪᴏɴ

The given curves are

  •  e^{-x}cos(y) + xy=\alpha

Differentiating w. r. t. x, we get

\implies - e^{-x}cos(y) - e^{-x}sin(y)\frac{dy}{dx}

\:\:\:\:\:\:\:\:\:\:\:+ y + x \frac{dy}{dx} = 0

\implies [x - e^{-x}sin(y)] \frac{dy}{dx}

\:\:\:\:\:\:\:\:\:\:= e^{-x}cos(y) - y

\implies \frac{dy}{dx} = \frac{e^{-x}cos(y) - y}{(x - e^{-x}sin(y))}

\implies m_1 = \frac{e^{-x}cos(y) - y}{x - e^{-x}sin(y)}

If  m_2 is the slope of the orthogonal curves, then

 \implies m_1\times m_2 = - 1

 \implies m_2 = - \frac{1}{m_1}

 \implies m_2 = - \frac{x - e^{-x}sin(y)}{e^{-x}cos(y) - y}

 \implies \frac{dy}{dx} = - \frac{x - e^{-x}sin(y)}{e^{-x}cos(y) - y}

 \implies (e^{-x}cos(y) - y) dy

\:\:\:\:\:\:\:\:\:\:= - (x - e^{-x}sin(y))dx

\implies xdx - ydy - e^{-x}sin(y)dx

\:\:\:\:\:\:\:\:\:\:+e^{-x}cos(y)dy=0

\implies xdx - ydy +d(e^{-x}sin(y)) =0

\implies \int[xdx - ydy

\:\:\:\:\:\:\:\:\:\:+d(e^{-x}sin(y))] =C

\implies \int xdx - \int ydy

\:\:\:\:\:\:\:\:\:\:+ \int d(e^{-x}sin(y))=C

\implies \frac{x^2}{2} - \frac{y^2}{2}+ e^{-x}sin(y) =C

\implies 2e^{-x}sin(y) +(x^2 - y^2) =\beta

Similar questions