Math, asked by patilanuj913, 19 days ago

a) find the value of a when vector 3i+2j +9k and i+ aj +3K are
1)Perpendicular 2) Parallel​

Answers

Answered by AnanyaSrivastava03
2

your answer is in the picture

Attachments:
Answered by parulsehgal06
1

Answer:

When vectors are (i) Perpendicular, the value of  a = -15

                              (ii) Parallel, the value of  a = 2/3

Step-by-step explanation:

Given two vectors are

  3i+2j+9k and i +aj+3k

  • Let A =  3i+2j+9k and B = i +aj+3k
  • If the two vectors are Perpendicular then their dot product is zero.

                                        A.B = 0

                        (3i+2j+9k).(i +aj+3k) = 0

                    (3i).(i)+(2j).(aj)+(9k).(3k) = 0

                          3(i.i)+2a(j.j)+27(k.k) = 0

                                          3+2a+27 = 0

                                              2a+30 = 0

                                                    2a = -30

                                                      a = -15

           When the given vectors are Perpendicular then a = -15.

  • If the two vectors are Parallel then their  cross product is equal to zero.

                                    AXB = 0

                      (3i+2j+9k) X (i +aj+3k) = 0

                We know that

                     AXB = (a₂b₃-b₂a₃)i - (a₁b₃-a₃b₁)j + (a₁b₂-a₂b₁)k

             where a₁ = 3, a₂ = 2, a₃ = 9,

                        b₁ = 1, b₂ = a, b₃ = 3

                AXB = [(2×3)-(a×9)]i - [(3×3)-(9×1)]j+[(3×a)-(2×1)]k = 0

                                                       (6-9a)i - (9-9)j + (3a-2)k = 0

                Now take 6-9a = 0

                                    9a = 6

                                       a = 6/9

                                        a = 2/3

        When the given vectors are Parallel then a = 2/3.

Know more about  Vectors:

https://brainly.in/question/12901331?referrer=searchResults  

https://brainly.in/question/27280080?referrer=searchResults

Similar questions