Math, asked by ashutoshdlw5, 9 months ago

a
find the value of a
x³—2ax²+16​

Answers

Answered by Legend42
1

Answer:

use factor theorem as x+2 is factor of

x³-2ax²+16 so put x = -2 and equate the equation to 0

so putting x = -2

(-2)³-2a(-2)²+16 =0

-8-8a+16=0

-8a = -8

a = 8/8= 1

So,

a = 1

Plzzzzz mark it as branliest

Answered by Anonymous
3

{ \tt{ \large \underline{question \colon}}}

{ \rm{  {x}^{3}   - 2a {x}^{2}  + 16 \: find \: the \: value \: of \: a}}

{ \tt{ \large \underline{to \: find \colon}}}

{ \rm{ \longrightarrow to \:  find \: the \: value \: of \: a}}

{ \tt{ \large \underline{solution \colon}}}

{ \rm{according \: to \: factor \: theoram}}

{ \rm{let \: x + 1 = 0}}

{ \rm{\implies x  =  - 1}}

{ \rm{ \therefore {x}^{3}  - 2a {x}^{2} + 16 = 0}}

{ \rm{ \implies {( - 1)}^{3}  - 2a {( - 1)}^{2} + 16 = 0}}

{ \rm{ \implies  - 1  - 2a  + 16 = 0}}

{ \rm{ \implies    - 2a  + 15 = 0}}

{ \rm{ \implies   ( - 2a)   = ( - 15)}}

{ \rm{ \implies   (  \not- 2a)   = (  \not- 15)}}

{ \rm{ \implies     2a  = 15}}

{ \rm{ \implies     a  =  \dfrac{15}{2} }}

{ \rm{ \implies     a  =  7.5 }}

{ \tt{ \large{  \therefore  the \: value \: of \:   a  =  7.5 }}}

Similar questions