Math, asked by nsaheungnewme, 3 months ago

(a) Find the value of k if the matrix [ 2 -1 4 5 7 k 2 8 9]
is singular.

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:A = \begin{bmatrix}</p><p>2 &amp;  - 1 &amp; 4 \\</p><p>5 &amp; 7 &amp; k  \\</p><p>2 &amp;8 &amp; 9 \\</p><p>\end{bmatrix}

It is given that

\rm :\longmapsto\:A \: is \: singular \: matrix.

\rm :\implies\: |A|  = 0

\rm :\longmapsto\:\begin{array}{|ccc|}</p><p>2 &amp;  - 1 &amp; 4 \\</p><p>5 &amp; 7 &amp; k  \\</p><p>2 &amp;8 &amp; 9 \\</p><p>\end{array} = 0

\rm :\longmapsto\:2\begin{array}{|cc|}\sf 7 &amp;\sf k  \\ \sf 8 &amp;\sf 9 \\\end{array} + 1\begin{array}{|cc|}\sf 5 &amp;\sf k  \\ \sf 2 &amp;\sf 9 \\\end{array} + 4\begin{array}{|cc|}\sf 5 &amp;\sf 7  \\ \sf 2 &amp;\sf 8 \\\end{array} = 0

\rm :\longmapsto\:2(63 - 8k) + (45 - 2k) + 4(40 - 14) = 0

\rm :\longmapsto\:126 - 16k + 45 - 2k + 104 = 0

\rm :\longmapsto\:275 - 18k = 0

\rm :\implies\:k = \dfrac{275}{18}

Additional Information :-

  • 1. The determinant remains unaltered if its rows are changed into columns and the columns into rows. This is known as the property of reflection.

  • 2. If all the elements of a row (or column) are zero, then the determinant is zero.

  • 3. If the all elements of a row (or column) are proportional (identical) to the elements of some other row (or column), then the determinant is zero.

  • 4. The interchange of any two rows (or columns) of the determinant changes its sign.

  • 5. If all the elements of a determinant above or below the main diagonal consist of zeros, then the determinant is equal to the product of diagonal elements
Similar questions